Красота глаз Очки Россия

Определение суммы разности и произведения событий. Теория вероятностей введение

Сумма всех вероятностей событий выборочного пространства равняется 1. Например, если экспериментом является подбрасывание монеты при Событии А = «орел» и Событии В = «решка», то А и В представляют собой все выборочное пространство. Значит, Р(А) +Р(В) = 0.5 + 0.5 = 1 .

Пример. В ранее предложенном примере вычисления вероятности извлечения из кармана халата красной ручки (это событие А), в котором лежат две синих и одна красная ручка, Р(А) = 1/3 ≈ 0.33, вероятность противоположного события – извлечения синей ручки – составит

Прежде чем перейти к основным теоремам, введем еще два более сложных понятия - сумма и произведение событий. Эти понятия отличны от привычных понятий суммы и произведения в арифметике. Сложение и умножение в теории вероятностей - символические операции, подчиненные определенным правилам и облегчающие логическое построение научных выводов.

Суммой нескольких событий является событие, заключающееся в появлении хотя бы одного из них. То есть, суммой двух событий А и В называется событие С, состоящее в появлении или события А, или события В, или событий А и В вместе.

Например, если пассажир ждет на остановке трамваев какой-либо из двух маршрутов, то нужное ему событие заключается в появлении трамвая первого маршрута (событие А), или трамвая второго маршрута (событие В), или в совместном появлении трамваев первого и второго маршрутов (событие С). На языке теории вероятностей это значит, что нужное пассажиру событие D заключается в появлении или события А, или события В, или события С, что символически запишется в виде:

D = A + B + C

Произведением двух событий А и В является событие, заключающееся в совместном появлении событий А и В . Произведением нескольких событий называется совместное появление всех этих событий.

В приведенном примере с пассажиром событие С (совместное появление трамваев двух маршрутов) представляет собой произведение двух событий А и В , что символически записывается следующим образом:

Допустим, что два врача порознь осматривают пациента с целью выявления конкретного заболевания. В процессе осмотров возможно появление следующих событий:

Обнаружение заболеваний первым врачом (А );

Необнаружение заболевания первым врачом ();

Обнаружение заболевания вторым врачом (В );

Необнаружение заболевания вторым врачом ().

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров ровно один раз. Это событие может реализоваться двумя способами:

Заболевание обнаружит первый врач (А ) и не обнаружит второй ();

Заболеваний не обнаружит первый врач () и обнаружит второй (B ).

Обозначим рассматриваемое событие через и запишем символически:

Рассмотрим событие, которое заключается в том, что заболевание будет обнаружено в процессе осмотров дважды (и первым, и вторым врачом). Обозначим это событие через и запишем: .

Событие, заключающееся в том, что ни первый, ни второй врач заболевания не обнаружит, обозначим через и запишем: .

Основные теоремы теории вероятности

Вероятность суммы двух несовместных событий равняется сумме вероятностей этих событий.

Запишем теорему сложения символически:

Р(А + В) = Р(А)+Р(В) ,

где Р - вероятность соответствующего события (событие указывается в скобках).

Пример . У больного наблюдается желудочное кровотечение. Этот симптом регистрируется при язвенной эрозии сосуда (событие А), разрыве варикозно-расширенных вен пищевода (событие В), раке желудка (событие С), полипе желудка (событие D), геморрагическом диатезе (событие F), механической желтухе (событие Е) и конечном гастрите (событие G ).

Врач, основываясь на анализе статистических данных, присваивает каждому событию значение вероятности:

Всего врач имел 80 больных с желудочным кровотечением (n = 80), из них у 12 была язвенная эрозия сосуда (), у 6 - разрыв варикозно-расширенных вен пищевода (), у 36 - рак желудка () и т. д.

Для назначения обследования врач хочет определить вероятность того, что желудочное кровотечение связано с заболеванием желудка (событие I):

Вероятность того, что желудочное кровотечение связано с заболеванием желудка, достаточно высока, и врач может определить тактику обследования, исходя из предположения о заболевании желудка, обоснованном на количественном уровне с помощью теории вероятностей.

Если рассматриваются совместные события, вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности совместного их наступления.

Символически это записывается следующей формулой:

Если представить себе, что событие А заключается в попадании при стрельбе в мишень, заштрихованную горизонтальными полосами, а событие В - в попадании в мишень, заштрихованную вертикальными полосами, то в случае несовместных событий по теореме сложения вероятность суммы равна сумме вероятностей отдельных событий. Если же эти события совместны, то есть некоторая вероятность, соответствующая совместному наступлению событий А и В . Если не ввести поправку на вычитаемое Р(АВ) , т.е. на вероятность совместного наступления событий, то эта вероятность будет учтена дважды, так как площадь, заштрихованная и горизонтальными, и вертикальными линиями, является составной частью обеих мишеней и будет учитываться как в первом, так и во втором слагаемом.

На рис. 1 дана геометрическая интерпретация, наглядно иллюстрирующая данное обстоятельство. В верхней части рисунка помещены непересекающиеся мишени, являющиеся аналогом несовместных событий, в нижней части - пересекающиеся мишени, являющиеся аналогом совместных событий (одним выстрелом можно попасть сразу и в мишень А, и в мишень В).

Прежде чем перейти к теореме умножения, необходимо рассмотреть понятия независимых и зависимых событий и условной и безусловной вероятностей.

Независимым от события В называется такое событие А, вероятность появления которого не зависит от появления или непоявления события В.

Зависимым от события В называется такое событие А, вероятность появления которого зависит от появления или непоявления события В.

Пример . В урне находятся 3 шара, 2 белых и 1 черный. При выборе шара наугад вероятность выбрать белый шар (событие А) равна: Р(А) = 2/3, а черный (событие В)Р(В) = 1/3. Мы имеем дело со схемой случаев, и вероятности событий рассчитываются строго по формуле. При повторении опыта вероятности появления событий А и В остаются неизменными, если после каждого выбора шар возвращается в урну. В этом случае события А и В являются независимыми. Если же выбранный в первом опыте шар в урну не возвращается, то вероятность события (А) во втором опыте зависит от появления или непоявления события (В) в первом опыте. Так, если в первом опыте появилось событие В (выбран черный шар), то второй опыт проводится при наличии в урне 2 белых шаров и вероятность появления события А во втором опыте равна: Р(А) = 2/2= 1.

Если же в первом опыте не появилось событие В(выбран белый шар), то второй опыт проводится при наличии в урне одного белого и одного черного шаров и вероятность появления события А во втором опыте равна: Р(А)=1/2. Очевидно, в этом случае события А и В тесно связаны и вероятности их появления являются зависимыми.

Условной вероятностью события А называется вероятность его появления при условии, что появилось событие В. Условная вероятность символически обозначается Р(А/В).

Если вероятность появления события А не зависит от появления события В , то условная вероятность события А равна безусловной вероятности:

Если вероятность появления события А зависит от появления события В, то условная вероятность никогда не может быть равна безусловной вероятности:

Выявление зависимости различных событий между собой имеет большое значение в решении практических задач. Так, например, ошибочное предположение о независимости появления некоторых симптомов при диагностике пороков сердца по вероятностной методике, разработанной в Институте сердечно-сосудистой хирургии им. А. Н. Бакулева, обусловило около 50% ошибочных диагнозов.

Достоверное и невозможное события

Достоверным называют событие, которое обязательно произойдет, если будет осуществлена определенная совокупность условий.

Невозможным называют событие, которое заведомо не произойдет, если будет осуществлена определенная совокупность условий.

Событие, совпадающее с пустым множеством, называется невозможным событием, а событие, совпадающее со всем множеством, называется достоверным событием.

События называют равновозможными , если нет основания полагать, что одно событие является более возможным, чем другие.

Теория вероятностей есть наука, изучающая закономерности случайных событий. Одной из главных задач в теории вероятностей является задача определения количественной меры возможности появления события.

АЛГЕБРА СОБЫТИЙ

Операции над событиями (сумма, разность, произведение)

С каждым испытанием связан ряд интересующих нас событий, которые, вообще говоря, могут появляться одновременно. Например, при бросании игральной кости (т.е. кубика, на гранях которого имеются очки 1, 2, 3, 4, 5, 6) событие есть выпадение двойки, а событие - выпадение четного числа очков. Очевидно, что эти события не исключают друг друга.

Пусть все возможные результаты испытания осуществляются в ряде единственно возможных частных случаев, взаимно исключающих друг друга. Тогда:

  • · каждый исход испытания представляется одним и только одним элементарным событием;
  • · всякое событие, связанное с этим испытанием, есть множество конечного или бесконечного числа элементарных событий;
  • · событие происходит тогда и только тогда, когда реализуется одно из элементарных событий, входящих в это множество.

Другими словами, задано произвольное, но фиксированное пространство элементарных событий, которое можно представить в виде некоторой области на плоскости. При этом элементарные события - это точки плоскости, лежащие внутри. Поскольку событие отождествляется с множеством, то над событиями можно совершать все операции, выполнимые над множествами. То есть, по аналогии с теорией множеств, строится алгебра событий . В частности, определены следующие операции и отношения между событиями:

(отношение включения множеств: множество является подмножеством множества) - событие A влечет за собой событие В. Иначе говоря, событие В происходит всякий раз, как происходит событие A.

(отношение эквивалентности множеств) - событие тождественно или эквивалентно событию. Это возможно в том и только в том случае, когда и одновременно, т.е. каждое из них происходит всякий раз, когда происходит другое.

() - сумма событий. Это событие, состоящее в том, что произошло хотя бы одно из двух событий или (не исключающее логическое «или»). В общем случае, под суммой нескольких событий понимается событие, состоящее в появлении хотя бы одного из этих событий.

() - произведение событий. Это событие, состоящее в совместном осуществлении событий и (логическое «и»). В общем случае, под произведением нескольких событий понимается событие, состоящее в одновременном осуществлении всех этих событий. Таким образом, события и несовместны, если произведение их есть событие невозможное, т.е. .

(множество элементов, принадлежащих, но не принадлежащих) - разность событий. Это событие, состоящее из исходов, входящих в, но не входящих в. Оно заключается в том, что происходит событие, но при этом не происходит событие.

Противоположным (дополнительным) для события (обозначается) называется событие, состоящее из всех исходов, которые не входят в.

Два события называются противоположными, если появление одного из них равносильно непоявлению другого. Событие, противоположное событию, происходит тогда и только тогда, когда событие не происходит. Другими словами, наступление события означает просто то, что событие не наступило.

Симметрическая разность двух событий и (обозначается) называется событие, состоящее из исходов, входящих в или, но не входящих в и в одновременно.

Смысл события состоит в том, что наступает одно и только одно из событий или.

Обозначается симметрическая разность: или.

События

Событие. Элементарное событие.

Пространство элементарных событий.

Достоверное событие. Невозможное событие.

Тождественные события.

Сумма, произведение, разность событий.

Противоположные события. Несовместные события.

Равновозможные события.

Под событием в теории вероятностей понимают любой факт, который может произойти или не произойти в результате опыта со случайным исходом. Самый простой результат такого опыта (например, появление "орла" или "решки" при бросании монеты, попадание в цель при стрельбе, появление туза при вынимании карты из колоды, случайное выпадение числа при бросании игральной кости и т.д.) называется элементарным событием .

Множество всех элементарных событий Е называется пространством элемен тарных событий . Так, при бросании игральной кости это пространство состоит из шести элементарных событий, а при вынимании карты из колоды – из 52. Событие может состоять из одного или нескольких элементарных событий, например, появление двух тузов подряд при вынимании карты из колоды, или выпадение одного и того же числа при трёхкратном бросании игральной кости. Тогда можно определить событие как произвольное подмножество пространства элементарных событий.

Достоверным событием называется всё пространство элементарных событий. Таким образом, достоверное событие – это событие, которое обязательно должно произойти в результате данного опыта. При бросании игральной кости таким событием является её падение на одну из граней.

Невозможным событием () называется пустое подмножество пространства элементарных событий. То есть, невозможное событие не может произойти в результате данного опыта. Так, при бросании игральной кости невозможным событием является её падение на ребро.

События А и В называются тождественными ( А = В ), если событие А происходит тогда и только тогда, когда проиходит событие В .

Говорят, что событие А влечёт за собой событие В ( А В ), если из условия "произошло событие А" следует "произошло событие В" .

Событие С называется суммой событий А и В ( С = А В ), если событие С происходит тогда и только тогда, когда происходит либо А , либо В .

Событие С называется произведением событий А и В ( С = А В ), если событие С происходит тогда и только тогда, когда происходит и А , и В .

Событие С называется разностью событий А и В ( С = А В ), если событие С происходит тогда и только тогда, когда происходит событие А , и не происходит событие В .

Событие А" называется противоположным событию А , если не произошло событие А . Так, промах и попадание при стрельбе – противоположные события.

События А и В называются несовместными ( А В = ) , если их одновременное появление невозможно. Например, выпадение и "решки", и "орла" при бросании монеты.

Если при проведении опыта могут произойти несколько событий и каждое из них по объективным условиям не является более возможным, чем другое, то такие события называются равновозможными . Примеры равновозможных событий: появление двойки, туза и валета при вынимании карты из колоды, выпадение любого из чисел от 1 до 6 при бросании игральной кости и т.п.

Совместные и несовместные события.

Два события называются совместными в данном опыте, если появление одного из них не исключает появления другого. Примеры : попадание в неразрушаемую цель двумя различными стрелками, выпадение одинакового числа очков на двух кубиках.

Два события называются несовместными (несовместимыми) в данном опыте, если они не могут произойти вместе при одном и том же испытании. Несколько событий называются несовместными, если они попарно несовместны. Примеры несовместных событий: а) попадание и промах при одном выстреле; б) из ящика с деталями наудачу извлечена деталь – события “извлечена стандартная деталь” и “извлечена нестандартная деталь” в) разорение фирмы и получение ею прибыли.

Другими словами, события А и В совместны, если соответствующие множества А и В имеют общие элементы, и несовместны если соответствующие множества А и В не имеют общих элементов.

При определении вероятностей событий часто используется понятие равновозможных событий. Несколько событий в данном опыте называются равновозможными, если по условиям симметрии есть основание считать, что ни одно из них объективно не является более возможным, чем другие (выпадение герба и решки, появление карты любой масти, выбор шара из урны и т.п.)

С каждым испытанием связан ряд событий, которые, вообще говоря, могут появляться одновременно. Например, при бросании игральной кости событие есть выпадение двойки, а событие – выпадение четного числа очков. Очевидно, что эти события не исключают друг друга.

Пусть все возможные результаты испытания осуществляются в ряде единственно возможных частных случаев, взаимно исключающих друг друга. Тогда

ü каждый исход испытания представляется одним и только одним элементарным событием;

ü всякое событие , связанное с этим испытанием, есть множество конечного или бесконечного числа элементарных событий;

ü событие происходит тогда и только тогда, когда реализуется одно из элементарных событий, входящих в это множество.

Произвольное, но фиксированное пространство элементарных событий , можно представить в виде некоторой области на плоскости. При этом элементарные события – это точки плоскости, лежащие внутри . Поскольку событие отождествляется с множеством, то над событиями можно совершать все операции, выполнимые над множествами. По аналогии с теорией множеств строится алгебра событий . При этом могут быть определены следующие операции и соотношения между событиями:

A ÌB (отношение включения множеств: множество А является подмножеством множества В ) событие A влечет за собой событие В . Иначе говоря, событие В происходит всякий раз, как происходит событие A . Пример - выпадение двойки влечет за собой выпадение четного числа очков.



(отношение эквивалентности множеств) событие тождественно или эквивалентно событию . Это возможно в том и только в том случае, когда и одновременно , т.е. каждое из них происходит всякий раз, когда происходит другое. Пример – событие А – поломка прибора, событие В – поломка хотя бы одного из блоков (деталей) прибора.

() сумма событий . Это событие, состоящее в том, что произошло хотя бы одно из двух событий или (логическое "или"). В общем случае, под суммой нескольких событий понимается событие, состоящее в появлении хотя бы одного из этих событий. Пример – цель поражена первым орудием, вторым или обоими одновременно.

() произведение событий . Это событие, состоящее в совместном осуществлении событий и (логическое "и"). В общем случае, под произведением нескольких событий понимается событие, состоящее в одновременном осуществлении всех этих событий. Таким образом, события и несовместны, если произведение их есть событие невозможное, т.е. . Пример – событие А – вынимание из колоды карты бубновой масти, событие В – вынимание туза, тогда - появление бубнового туза.не наступило.

Часто оказывается полезной геометрическая интерпретация операций над событиями. Графическая иллюстрация операций называется диаграммами Венна.


Правило сложения - если элемент A можно выбрать n способами, а элемент B можно выбрать m способами, то выбрать A или B можно n + m способами.

^ Правило умножения - если элемент A можно выбрать n способами, и при любом выборе A элемент B можно выбрать m способами, то пару (A, B) можно выбрать n·m способами.

Перестановка. Перестановкой множества из элементов называется расположение элементов в определенном порядке. Так, все различные перестановки множества из трех элементов - это

Число всех перестановок из элементов обозначается . Следовательно, число всех различных перестановок вычисляется по формуле

Размещение. Число размещений множества из элементов по элементов равно

^ Размещение с повторением. Если есть множество из n типов элементов, и нужно на каждом из m мест расположить элемент какого-либо типа (типы элементов могут совпадать на разных местах), то количество вариантов этого будет n m .

^ Cочетание. Определение. Сочетаниями из различных элементов по элементов называются комбинации, которые составлены из данных элементов по элементов и отличаются хотя бы одним элементом (иначе говоря, -элементные подмножества данного множества из элементов). butback="" onclick="goback(684168)">^ " ALIGN=BOTTOM WIDTH=230 HEIGHT=26 BORDER=0>


  1. Пространство элементарных событий. Случайное событие. Достоверное событие. Невозможное событие.
Пространство элементарных событий – любое множество взаимоисключающих исходов эксперимента, такое, что каждый интересующий нас результат может быть однозначно описан с помощью элементов этого множества. Бывает конечным и бесконечным(счетным и несчетным)

Случайное событие – любое подмножество пространства элементарных событий.

^ Достоверное событие – обязательно произойдет в результате эксперимента.

Невозможное событие – не произойдет в результате эксперимента.


  1. Действия над событиями: сумма, произведение и разность событий. Противоположное событие. Совместные и несовместные события. Полная группа событий.
Совместные события – если они могут произойти одновременно в результате эксперимента.

^ Несовместные события – если они не могут произойти одновременно в результате эксперимента. Говорят, что несколько несовместных событий образуют полную группу событий , если в результате эксперимента появится одно из них.

Если первое событие состоит из всех элементарных исходов, кроме тех, которые входят во второе событие, то такие события называются противоположными.

Сумма двух событий А и В – событие, состоящее из элементарных событий, принадлежащих хотя бы одному из событий А или В. ^ Произведение двух событий А и В – событие, состоящее из элементарных событий, принадлежащих одновременно А и В. Разность А и В – событие, состоящее из элементов А, не принадлежащих событию В.


  1. Классическое, статистическое и геометрическое определения вероятности. Основные свойства вероятности события.
Классическая схема: Р(А)=, n – число возможных исходов, m – число исходов, благоприятствующих событию А. татистическое определение: W(А)=, n – число произведенных экспериментов, m – число произведенных экспериментов, в которых появилось событие А. Геометрическое определение: Р(А)=, g – часть фигуры G.

^ Основные свойства вероятности: 1) 0≤Р(А)≤1, 2) Вероятность достоверного события равна 1, 3) Вероятность невозможного события равна 0.


  1. Теорема сложения вероятностей несовместных событий и следствия из нее.
Р(А+В) = Р(А)+Р(В). Следствие 1. Р(А 1 +А 2 +…+А к) = Р(А 1)+Р(А 2)+…+Р(А к), А 1 ,А 2 ,…,А к – попарно несовместны. Следствие 2 . Р(А)+Р(Ᾱ) = 1. Следствие 3 . Сумма вероятностей событий, образующих полную группу, равна 1.

  1. Условная вероятность. Независимые события. Умножение вероятностей зависимых и независимых событий.
Условная вероятность – Р(В), вычисляется в предположении, что событие А уже наступило. А и В независимые – если появление одного из них не меняет вероятность появления другого.

^ Умножение вероятностей: Для зависимых. Теорема. Р(А∙В) = Р(А)∙Р А (В). Замечание. Р(А∙В) = Р(А)∙Р А (В) = Р(В)∙Р В (А). Следствие. Р(А 1 ∙…∙А к) = Р(А 1)∙Р А1 (А 2)∙…∙Р А1-Ак-1 (А к). Для независимых. Р(А∙В) = Р(А)∙Р(В).


  1. ^ Т еорема сложения вероятностей совместных событий. Теорема . Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления
P(A+B) = P(A) + P(B) - P(A∙B)

  1. Формула полной вероятности. Формулы Байеса.
Формула полной вероятности

Н 1, Н 2 …Н n – образуют полную группу – гипотезы.

Событие А может наступить только при условии появления Н 1, Н 2 …Н n ,

Тогда Р(А)=Р(Н 1)* Р н1 (А)+Р(Н 2)*Р н2 (А)+…Р(Н n)*Р н n (А)

^ Формула Байеса

Пусть Н 1, Н 2 …Н n – гипотезы, событие А может наступить при одной из гипотез

Р(А)= Р(Н 1)* Р н1 (А)+Р(Н 2)*Р н2 (А)+…Р(Н n)*Р н n (А)

Допустим, что событие А наступило.

Как изменилась вероятность Н 1 в связи с тем, что А наступило? Т.е. Р А (Н 1)

Р(А* Н 1)=Р(А)* Р А (Н 1)= Р(Н 1)* Р н1 (А) => Р А (Н 1)= (Р(Н 1)* Р н1 (А))/ Р(А)

Аналогично определяются Н 2 , Н 3 …Н n

Общий вид:

Р А (Н i)= (Р(Н i)* Р н i (А))/ Р(А) , где i=1,2,3…n.

Формулы позволяют переоценить вероятности гипотез в результате того, как становится известным результат испытаний, в итоге которого появилось событие А.

«До» испытания – априорные вероятности - Р(Н 1), Р(Н 2)…Р(Н n)

«После» испытания – апостериорные вероятности - Р А (Н 1), Р А (Н 2)… Р А (Н n)

Апостериорные вероятности, также как и априорные, в сумме дают 1.
9.Формулы Бернулли и Пуассона.

Формула Бернулли

Пусть проводятся n испытаний, в каждом из которых событие А может появиться или нет. Если вероятность события А в каждом из этих испытаний постоянна, то эти испытания независимы относительно А.

Рассмотрим n независимых испытаний, в каждом из которых А может наступить с вероятностью p. Такая последовательность испытаний называется схемой Бернулли.

Теорема: вероятность того, что при n испытаниях событие А произойдет ровно m раз, равна: P n (m)=C n m *p m *q n - m

Число m 0 – наступление события А называется наивероятнейшим, если соответствующая ему вероятность P n (m 0) не меньше других P n (m)

P n (m 0)≥ P n (m), m 0 ≠ m

Для нахождения m 0 используют:

np-q≤ m 0 ≤np+q

^ Формула Пуассона

Рассмотрим испытание Бернулли:

n- число испытаний, p – вероятность успеха

Пусть p мало (p→0), а n велико (n→∞)

среднее число появлений успеха в n испытаниях

λ=n*p → p= λдставим в формулу Бернулли:

P n (m)=C n m *p m *(1-q) n-m ; C n m = n!/((m!*(n-m)!) →

→ P n (m)≈ (λ m /m!)*e - λ (Пуассона)

Если p≤0,1 и λ=n*p≤10, то формула дает хорошие результаты.
10. Локальная и интегральная теоремы Муавра-Лапласа.

Пусть n- число испытаний, p – вероятность успеха, n велико и стремится к бесконечности. (n->∞)

^ Локальная теорема

Р n (m)≈(f(x)/(npg)^ 1/2 , где f(x)= (e - x ^2/2)/(2Pi)^ 1/2

Если npq≥ 20 – дает хорошие результаты, х=(m-np)/(npg)^ 1/2

^ Теорема интегральная

P n (a≤m≤b)≈ȹ(x 2)-ȹ(x 1),

где ȹ(x)=1/(2Pi)^ 1/2 * 0 ʃ x e (Pi ^2)/2 dt – функция Лапласа

х 1 =(a-np)/(npq)^ 1/2 , х 2 =(b-np)/(npq)^ 1/2

Свойства функции Лапласа


  1. ȹ(x) – нечетная функция: ȹ(-x)=- ȹ(x)

  2. ȹ(x) – монотонно возрастает

  3. значения ȹ(x) (-0.5;0.5), причем lim x →∞ ȹ(x)=0,5; lim x →-∞ ȹ(x)=-0,5
Следствия

  1. P n (│m-np│≤Ɛ) ≈ 2 ȹ (Ɛ/(npq) 1/2)

  2. P n (ɑ≤m/n≤ƥ) ≈ ȹ(z 2)- ȹ(z 1), где z 1=(ɑ-p)/(pq/n)^ 1/2 z 2=(ƥ -p)/(pq/n)^ 1/2

  3. P n (│(m/n) - p│≈ ∆) ≈ 2 ȹ(∆n 1/2 /(pq)^ 1/2)
m/n относительная частота появления успеха в испытаниях

11. Случайная величина. Виды случайных величин. Способы задания случайной величины.

СВ – функция, заданная на множестве элементарных событий.

X,Y,Z – СВ, а ее значение x,y,z

Случайной называют величину, которая в результате испытаний примет одно и только одно возможное значение, наперед не известное и зависящее от случайных причин, которые заранее не могут быть учтены.

СВ дискретна , если множество ее значений конечно или сочтено (их можно пронумеровать). Она принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной СВ может быть конечным или бесконечным.

СВ непрерывна , если она принимает все возможные значения из некоторого промежутка (на всей оси). Ее значения могут очень мало отличаться.

^ Закон распределения дискретной СВ м.б. задан:

1.таблицей


Х

х 1

х 2



х n

Р(Х)

р 1

р 2



p n

(ряд распределения)

Х=х 1 } несовместны

р 1 + р 2 +… p n =1= ∑p i

2.графический

Многоугольник распределения вероятности

3.аналитический

Р=Р(Х)
12. Функция распределения случайной величины. Основные свойства функции распределения.

Функция распределения СВ Х – функция F(Х), определяющая вероятность того, что СВ Х примет значение меньшее х., т.е.

x x = интегральная функция распределения

У непрерывной СВ функция непрерывная, кусочно дифференцируемая.