Красота глаз Очки Россия

Производная неявно заданной функции. Производная функции, заданной неявно Вычислить производную функции первого порядка заданной неявно

Функция Z= f(х; у) называется неявной, если она задается уравнением F(x,y,z)=0 неразрешенным относительноZ. Найдем частные производныефункцииZзаданной неявно. Для этого подставив в уравнение вместоZфункцию f(х;у) получим тождествоF(x,y, f(х,у))=0. Частные производные поxи yфункции, тождественно равной нулю, также равны нулю.

F(x,y, f (х, у)) =
=0 (yсчитаем постоянным)

F(x,y, f (х, у)) =
=0 (xсчитаем постоянным)

Откуда
и

Пример : Найти частные производные функцииZзаданной уравнением
.

Здесь F(x,y,z)=
;
;
;
. По формулам приведенным выше имеем:

и

  1. Производная по направлению

Пусть функция двух переменных Z= f(x; у) задана в некоторой окрестности т. М (x,y). Рассмотрим некоторое направление, определяемое единичным вектором
, где
(см. рис.).

На прямой, проходящей по этому направлению через т. М возьмем т. М 1 (
) так, что длина
отрезкаMM 1 равна
. Приращение функцииf(M) определяется соотношением, где
связаны соотношениями. Предел отношенияпри
будет называться производной функции
в точке
по направлениюи обозначаться.

=

Если функция Zдифференцируема в точке
, то ее приращение в этой точке с учетом соотношений для
может быть записано в следующей форме.

поделив обе части на

и переходя к пределу при
получим формулу для производной функции Z= f(х; у) по направлению:

  1. Градиент

Рассмотрим функцию трех переменных
дифференцируемой в некоторой точке
.

Градиентом этой функции
в точке М называется вектор, координаты которого равны соответственно частным производным
в этой точке. Для обозначения градиента используют символ
.
=
.

.Градиент указывает направление наибыстрейшего роста функции в данной точке.

Поскольку единичный вектор имеет координаты (
), то производная по направлению для случая функции трех переменных записывается в виде, т.е.имеет формулу скалярного произведения векторови
. Перепишем последнюю формулу в следующем виде:

, где- угол между вектороми
. Поскольку
, то отсюда следует, что производная функции по направлению принимаетmaxзначение при=0, т.е. когда направление векторови
совпадают. При этом
.Т.е., на самом деле градиент функции характеризует направление и величину максимальной скорости возрастания этой функции в точке.

  1. Экстремум функции двух переменных

Понятия max,min, экстремума функции двух переменных аналогичны соответствующим понятиям функции одной переменной. Пусть функция Z= f(x; у) определена в некоторой областиDи т. М
принадлежит к этой области. Точка М
называется точкойmaxфункции Z= f(x; у), если существует такая δ-окрестность точки
, что для каждой точки из этой окрестности выполняется неравенство
. Аналогичным образом определяется и точкаmin, только знак неравенства при этом изменится
. Значение функции в точкеmax(min) называется максимумом (минимумом). Максимум и минимум функции называются экстремумами.

  1. Необходимые и достаточные условия экстремума

Теорема: (Необходимые условия экстремума). Если в точке М
дифференцируемая функция Z= f(x; у) имеет экстремум, то ее частные производные в этой точке равны нулю:
,
.

Доказательство: зафиксировав одну из переменныхxилиy, ревратим Z= f(x; у) в функцию одной переменной, для экстремума которой вышеописанные условия должны выполняться. Геометрически равенства
и
означают, что в точке экстремума функции Z= f(x; у), касательная плоскость к поверхности, изображающую функциюf(x,y)=Zпараллельна плоскостиOXY, т.к. уравнение касательной плоскости естьZ=Z 0. Точка, в которой частные производные первого порядка функции Z= f(x; у) равны нулю, т.е.
,
, называются стационарной точкой функции. Функция может иметь экстремум в точках, где хотя бы одна из частных производных не существует. НапримерZ=|-
| имеетmaxв точкеO(0,0), но не имеет в этой точке производных.

Стационарные точки и точки, в которых хотя бы одна частная производная не существует, называются критическими точками. В критических точках функция может иметь экстремум, а может и не иметь. Равенство нулю частных производных является необходимым, но не достаточным условием существования экстремума. Например, приZ=xyточкаO(0,0) является критической. Однако экстремума в ней функцияZ=xyне имеет. (Т.к. вIиIIIчетвертяхZ>0, а вIIиIV–Z<0). Таким образом для нахождения экстремумов функции в данной области необходимо подвергнуть каждую критическую точку функции дополнительному исследованию.

Теорема : (Достаточное условие экстремумов). Пусть в стационарной точке
и некоторой окрестности функция f(x; у) имеет непрерывные частные производные до 2 ого порядка включительно. Вычислим в точке
значения
,
и
. Обозначим


В случае если
, экстремум в точке
может быть, а может и не быть. Необходимы дополнительные исследования.

Рассмотрим функцию y(x), которая записывается неявным способом в общем виде $ F(x,y(x)) = 0 $. Производная неявной функции находится двумя способами:

  1. Дифференцированием обеих частей уравнения
  2. С помощью использования готовой формулы $ y" = - \frac{F"_x}{F"_y} $

Как найти?

Способ 1

Не требуется приводить функцию к явному виду. Нужно сразу приступать к дифференцированию левой и правой части уравнения по $ x $. Стоит обратить внимание, что производная $ y" $ вычисляется по правилу дифференцирования сложной функции. Например, $ (y^2)"_x = 2yy" $. После нахождения производной необходимо выразить $ y" $ из полученного уравнения и разместить $ y" $ в левой части.

Способ 2

Можно воспользоваться формулой, в которой используются в числителе и знаменателе частные производные неявной функции $ F(x,y(x)) = 0 $. Для нахождения числителя берем производную по $ x $, а для знаменателя производную по $ y $.

Вторую производную неявной функции можно найти с помощью повторного дифференцирования первой производной неявной функции.

Примеры решений

Рассмотрим практические примеры решений на вычисление производной неявно заданной функции.

Пример 1

Найти производную неявной функции $ 3x^2y^2 -5x = 3y - 1 $

Решение

Воспользуемся способом №1. А именно продифференцируем левую и правую часть уравнения:

$$ (3x^2y^2 -5x)"_x = (3y - 1)"_x $$

Не забываем при дифференцировании использовать формулу производной произведения функций:

$$ (3x^2)"_x y^2 + 3x^2 (y^2)"_x - (5x)"_x = (3y)"_x - (1)"_x $$

$$ 6x y^2 + 3x^2 2yy" - 5 = 3y" $$

$$ 6x y^2 - 5 = 3y" - 6x^2 yy" $$

$$ 6x y^2 - 5 = y"(3-6x^2 y) $$

$$ y" = \frac{6x y^2 - 5}{3 - 6x^2y } $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ y" = \frac{6x y^2 - 5}{3 - 6x^2y } $$
Пример 2

Функция задана неявно, найти производную $ 3x^4 y^5 + e^{7x-4y} -4x^5 -2y^4 = 0 $

Решение

Воспользуемся способом №2. Находим частные производные функции $ F(x,y) = 0 $

Положим $ y $ постоянной и продифференцируем по $ x $:

$$ F"_x = 12x^3 y^5 + e^{7x-4y} \cdot 7 - 20x^4 $$

$$ F"_x = 12x^3 y^5 + 7e^{7x-4y} - 20x^4 $$

Считаем теперь $ x $ константой и дифференцируем по $ y $:

$$ F"_y = 15x^4 y^4 + e^{7x-4y} \cdot (-4) - 8y^3 $$

$$ F"_y = 15x^4 y^4 - 4e^{7x-4y} - 8y^3 $$

Подставляем теперь в формулу $ y" = -\frac{F"_y}{F"_x} $ и получаем:

$$ y" = -\frac{12x^3 y^5 + 7e^{7x-4y} - 20x^4}{15x^4 y^4 - 4e^{7x-4y} - 8y^3} $$

Ответ
$$ y" = -\frac{12x^3 y^5 + 7e^{7x-4y} - 20x^4}{15x^4 y^4 - 4e^{7x-4y} - 8y^3} $$

Или короче - производная неявной функции. Что такое неявная функция? Поскольку мои уроки носят практическую направленность, я стараюсь избегать определений, формулировок теорем, но здесь это будет уместно сделать. А что такое вообще функция?

Функция одной переменной - это правило, по которому каждому значению независимой переменной соответствует одно и только одно значение функции .

Переменная называется независимой переменной или аргументом .
Переменная называется зависимой переменной или функцией .

Грубо говоря, буковка «игрек» в данном случае - и есть функция.

До сих пор мы рассматривали функции, заданные в явном виде. Что это значит? Устроим разбор полётов на конкретных примерах.

Рассмотрим функцию

Мы видим, что слева у нас одинокий «игрек» (функция), а справа - только «иксы» . То есть, функция в явном виде выражена через независимую переменную .

Рассмотрим другую функцию:

Здесь переменные и расположены «вперемешку». Причем никакими способами невозможно выразить «игрек» только через «икс». Что это за способы? Перенос слагаемых из части в часть со сменой знака, вынесение за скобки, перекидывание множителей по правилу пропорции и др. Перепишите равенство и попробуйте выразить «игрек» в явном виде: . Можно крутить-вертеть уравнение часами, но у вас этого не получится.

Разрешите познакомить: - пример неявной функции .

В курсе математического анализа доказано, что неявная функция существует (однако не всегда), у неё есть график (точно так же, как и у «нормальной» функции). У неявной функции точно так же существует первая производная, вторая производная и т.д. Как говорится, все права секс-меньшинств соблюдены.

И на этом уроке мы научимся находить производную от функции, заданной неявно. Это не так сложно! Все правила дифференцирования, таблица производных элементарных функций остаются в силе. Разница в одном своеобразном моменте, который мы рассмотрим прямо сейчас.

Да, и сообщу хорошую новость - рассмотренные ниже задания выполняются по довольно жесткому и чёткому алгоритму без камня перед тремя дорожками.

Пример 1

1) На первом этапе навешиваем штрихи на обе части:

2) Используем правила линейности производной (первые два правила урока Как найти производную? Примеры решений ):

3) Непосредственное дифференцирование.
Как дифференцировать и совершенно понятно. Что делать там, где под штрихами есть «игреки»?

Просто до безобразия, производная от функции равна её производной : .


Как дифференцировать

Здесь у нас сложная функция . Почему? Вроде бы под синусом всего одна буква «игрек». Но, дело в том, что всего одна буква «игрек» - САМА ПО СЕБЕ ЯВЛЯЕТСЯ ФУНКЦИЕЙ (см. определение в начале урока). Таким образом, синус - внешняя функция, - внутренняя функция. Используем правило дифференцирования сложной функции :

Произведение дифференцируем по обычному правилу :

Обратите внимание, что - тоже сложная функция, любой «игрек с наворотами» - сложная функция :

Само оформление решения должно выглядеть примерно так:

Если есть скобки, то раскрываем их:

4) В левой части собираем слагаемые, в которых есть «игрек» со штрихом. В правую часть - переносим всё остальное:

5) В левой части выносим производную за скобки:

6) И по правилу пропорции сбрасываем эти скобки в знаменатель правой части:

Производная найдена. Готово.

Интересно отметить, что в неявном виде можно переписать любую функцию. Например, функцию можно переписать так: . И дифференцировать её по только что рассмотренному алгоритму. На самом деле фразы «функция, заданная в неявном виде» и «неявная функция» отличаются одним смысловым нюансом. Фраза «функция, заданная в неявном виде» более общая и корректная, - эта функция задана в неявном виде, но здесь можно выразить «игрек» и представить функцию в явном виде. Под фразой «неявная функция» понимают «классическую» неявную функцию, когда «игрек» выразить нельзя.

Второй способ решения

Внимание! Со вторым способом можно ознакомиться только в том случае, если Вы умеете уверенно находить частные производные. Начинающие изучать математический анализ и чайники, пожалуйста, не читайте и пропустите этот пункт, иначе в голове будет полная каша.

Найдем производную неявной функции вторым способом.

Переносим все слагаемые в левую часть:

И рассматриваем функцию двух переменных:

Тогда нашу производную можно найти по формуле

Найдем частные производные:

Таким образом:

Второй способ решения позволяет выполнить проверку. Но оформлять им чистовой вариант задания нежелательно, поскольку частные производные осваивают позже, и студент, изучающий тему «Производная функции одной переменной», знать частные производные как бы еще не должен.

Рассмотрим еще несколько примеров.

Пример 2

Найти производную от функции, заданной неявно

Навешиваем штрихи на обе части:

Используем правила линейности:

Находим производные:

Раскрываем все скобки:

Переносим все слагаемые с в левую часть, остальные - в правую часть:

В левой части выносим за скобку:

Окончательный ответ:

Пример 3

Найти производную от функции, заданнойнеявно

Полное решение и образец оформления в конце урока.

Не редкость, когда после дифференцирования возникают дроби. В таких случаях от дробей нужно избавляться. Рассмотрим еще два примера.каждое слагаемое каждой части

Пример 5

Найти производную от функции, заданной неявно

Это пример для самостоятельного решения. Единственное, в нём, перед тем как избавиться от дроби, предварительно нужно будет избавиться от трехэтажности самой дроби. Полное решение и ответ в конце урока.

Производная функции, заданной неявно.
Производная параметрически заданной функции

В данной статье мы рассмотрим еще два типовых задания, которые часто встречаются в контрольных работах по высшей математике. Для того чтобы успешно освоить материал, необходимо уметь находить производные хотя бы на среднем уровне. Научиться находить производные практически с нуля можно на двух базовых уроках и Производная сложной функции . Если с навыками дифференцирования всё в порядке, тогда поехали.

Производная функции, заданной неявно

Или короче – производная неявной функции. Что такое неявная функция? Давайте сначала вспомним само определение функции одной переменной :

Функция одной переменной –это правило, по которому каждому значению независимой переменной соответствует одно и только одно значение функции .

Переменная называется независимой переменной или аргументом .
Переменная называется зависимой переменной или функцией .

До сих пор мы рассматривали функции, заданные в явном виде. Что это значит? Устроим разбор полётов на конкретных примерах.

Рассмотрим функцию

Мы видим, что слева у нас одинокий «игрек», а справа – только «иксы» . То есть, функция в явном виде выражена через независимую переменную .

Рассмотрим другую функцию:

Здесь переменные и расположены «вперемешку». Причем никакими способами невозможно выразить «игрек» только через «икс». Что это за способы? Перенос слагаемых из части в часть со сменой знака, вынесение за скобки, перекидывание множителей по правилу пропорции и др. Перепишите равенство и попробуйте выразить «игрек» в явном виде: . Можно крутить-вертеть уравнение часами, но у вас этого не получится.

Разрешите познакомить: – пример неявной функции .

В курсе математического анализа доказано, что неявная функция существует (однако не всегда), у неё есть график (точно так же, как и у «нормальной» функции). У неявной функции точно так же существует первая производная, вторая производная и т.д. Как говорится, все права секс-меньшинств соблюдены.

И на этом уроке мы научимся находить производную от функции, заданной неявно. Это не так сложно! Все правила дифференцирования, таблица производных элементарных функций остаются в силе. Разница в одном своеобразном моменте, который мы рассмотрим прямо сейчас.

Да, и сообщу хорошую новость – рассмотренные ниже задания выполняются по довольно жесткому и чёткому алгоритму без камня перед тремя дорожками.

Пример 1

1) На первом этапе навешиваем штрихи на обе части:

2) Используем правила линейности производной (первые два правила урока Как найти производную? Примеры решений ):

3) Непосредственное дифференцирование.
Как дифференцировать и совершенно понятно. Что делать там, где под штрихами есть «игреки»?

– просто до безобразия, производная от функции равна её производной : .

Как дифференцировать
Здесь у нас сложная функция . Почему? Вроде бы под синусом всего одна буква «игрек». Но, дело в том, что всего одна буква «игрек» – САМА ПО СЕБЕ ЯВЛЯЕТСЯ ФУНКЦИЕЙ (см. определение в начале урока). Таким образом, синус – внешняя функция, – внутренняя функция. Используем правило дифференцирования сложной функции :

Произведение дифференцируем по обычному правилу :

Обратите внимание, что – тоже сложная функция, любой «игрек с наворотами» – сложная функция :

Само оформление решения должно выглядеть примерно так:


Если есть скобки, то раскрываем их:

4) В левой части собираем слагаемые, в которых есть «игрек» со штрихом. В правую часть – переносим всё остальное:

5) В левой части выносим производную за скобки:

6) И по правилу пропорции сбрасываем эти скобки в знаменатель правой части:

Производная найдена. Готово.

Интересно отметить, что в неявном виде можно переписать любую функцию. Например, функцию можно переписать так: . И дифференцировать её по только что рассмотренному алгоритму. На самом деле фразы «функция, заданная в неявном виде» и «неявная функция» отличаются одним смысловым нюансом. Фраза «функция, заданная в неявном виде» более общая и корректная, – эта функция задана в неявном виде, но здесь можно выразить «игрек» и представить функцию в явном виде. Под словами же «неявная функция» чаще понимают «классическую» неявную функцию, когда «игрек» выразить нельзя.

Следует также отметить, что «неявное уравнение» может неявно задавать сразу две или даже бОльшее количество функций, так, например, уравнение окружности неявно задаёт функции , , которые определяют полуокружности.Но, в рамках данной статьи, мы не будем делать особого различия между терминами и нюансами, это была просто информация для общего развития.

Второй способ решения

Внимание! Со вторым способом можно ознакомиться только в том случае, если Вы умеете уверенно находить частные производные . Начинающие изучать математический анализ и чайники, пожалуйста, не читайте и пропустите этот пункт , иначе в голове будет полная каша.

Найдем производную неявной функции вторым способом.

Переносим все слагаемые в левую часть:

И рассматриваем функцию двух переменных:

Тогда нашу производную можно найти по формуле
Найдем частные производные:

Таким образом:

Второй способ решения позволяет выполнить проверку. Но оформлять им чистовой вариант задания нежелательно, поскольку частные производные осваивают позже, и студент, изучающий тему «Производная функции одной переменной», знать частные производные как бы еще не должен.

Рассмотрим еще несколько примеров.

Пример 2

Найти производную от функции, заданной неявно

Навешиваем штрихи на обе части:

Используем правила линейности:

Находим производные:

Раскрываем все скобки:

Переносим все слагаемые с в левую часть, остальные – в правую часть:

Окончательный ответ:

Пример 3

Найти производную от функции, заданной неявно

Полное решение и образец оформления в конце урока.

Не редкость, когда после дифференцирования возникают дроби. В таких случаях от дробей нужно избавляться. Рассмотрим еще два примера.

Пример 4

Найти производную от функции, заданной неявно

Заключаем обе части под штрихи и используем правило линейности:

Дифференцируем, используя правило дифференцирования сложной функции и правило дифференцирования частного :


Раскрываем скобки:

Теперь нам нужно избавиться от дроби. Это можно сделать и позже, но рациональнее сделать сразу же. В знаменателе дроби находится . Умножаем на . Если подробно, то выглядеть это будет так:

Иногда после дифференцирования появляется 2-3 дроби. Если бы у нас была еще одна дробь, например, , то операцию нужно было бы повторить – умножить каждое слагаемое каждой части на

В левой части выносим за скобку:

Окончательный ответ:

Пример 5

Найти производную от функции, заданной неявно

Это пример для самостоятельного решения. Единственное, в нём, перед тем как избавиться от дроби, предварительно нужно будет избавиться от трехэтажности самой дроби. Полное решение и ответ в конце урока.

Производная параметрически заданной функции

Не напрягаемся, в этом параграфе тоже всё достаточно просто. Можно записать общую формулу параметрически заданной функции, но, для того, чтобы было понятно, я сразу запишу конкретный пример. В параметрической форме функция задается двумя уравнениями: . Частенько уравнения записывают не под фигурными скобками, а последовательно: , .

Переменная называется параметром и может принимать значения от «минус бесконечности» до «плюс бесконечности». Рассмотрим, например, значение и подставим его в оба уравнения: . Или по человечески: «если икс равен четырем, то игрек равно единице». На координатной плоскости можно отметить точку , и эта точка будет соответствовать значению параметра . Аналогично можно найти точку для любого значения параметра «тэ». Как и для «обычной» функции, для американских индейцев параметрически заданной функции все права тоже соблюдены: можно построить график, найти производные и т.д. Кстати, если есть надобность построить график параметрически заданной функции, можете воспользоваться моей программой .

В простейших случаях есть возможность представить функцию в явном виде. Выразим из первого уравнения параметр: – и подставим его во второе уравнение: . В результате получена обыкновенная кубическая функция.

В более «тяжелых» случаях такой фокус не прокатывает. Но это не беда, потому что для нахождения производной параметрической функции существует формула:

Находим производную от «игрека по переменной тэ»:

Все правила дифференцирования и таблица производных справедливы, естественно, и для буквы , таким образом, какой-то новизны в самом процессе нахождения производных нет . Просто мысленно замените в таблице все «иксы» на букву «тэ».

Находим производную от «икса по переменной тэ»:

Теперь только осталось подставить найденные производные в нашу формулу:

Готово. Производная, как и сама функция, тоже зависит от параметра .

Что касается обозначений, то в формуле вместо записи можно было просто записать без подстрочного индекса, поскольку это «обычная» производная «по икс». Но в литературе всегда встречается вариант , поэтому я не буду отклоняться от стандарта.

Пример 6

Используем формулу

В данном случае:

Таким образом:

Особенностью нахождения производной параметрической функции является тот факт, что на каждом шаге результат выгодно максимально упрощать . Так, в рассмотренном примере при нахождении я раскрыл скобки под корнем (хотя мог этого и не делать). Велик шанс, что при подстановке и в формулу многие вещи хорошо сократятся. Хотя встречаются, конечно, примеры и с корявыми ответами.

Пример 7

Найти производную от функции, заданной параметрически

Это пример для самостоятельного решения.

В статье Простейшие типовые задачи с производной мы рассматривали примеры, в которых требовалось найти вторую производную функции. Для параметрически заданной функции тоже можно найти вторую производную, и находится она по следующей формуле: . Совершенно очевидно, что для того чтобы найти вторую производную, нужно сначала найти первую производную.

Пример 8

Найти первую и вторую производные от функции, заданной параметрически

Сначала найдем первую производную.
Используем формулу

В данном случае:

Будем учиться находить производные функций, заданных неявно, то есть заданных некоторыми уравнениями, связывающими между собой переменные x и y . Примеры функций, заданных неявно:

,

Производные функций, заданных неявно, или производные неявных функций, находятся довольно просто. Сейчас же разберём соответствующее правило и пример, а затем выясним, для чего вообще это нужно.

Для того, чтобы найти производную функции, заданной неявно, нужно продифференцировать обе части уравнения по иксу. Те слагаемые, в которых присутствует только икс, обратятся в обычную производную функции от икса. А слагаемые с игреком нужно дифференцировать, пользуясь правилом дифференцирования сложной функции, так как игрек - это функция от икса. Если совсем просто, то в полученной производной слагаемого с иксом должно получиться: производная функции от игрека, умноженная на производную от игрека. Например, производная слагаемого запишется как , производная слагаемого запишется как . Далее из всего этого нужно выразить этот "игрек штрих" и будет получена искомая производная функции, заданной неявно. Разберём это на примере.

Пример 1.

Решение. Дифференцируем обе части уравнения по иксу, считая, что игрек - функция от икса:

Отсюда получаем производную, которая требуется в задании:

Теперь кое-что о неоднозначном свойстве функций, заданных неявно, и почему нужны особенные правила их дифференцирования. В части случаев можно убедиться, что подстановка в заданное уравнение (см. примеры выше) вместо игрека его выражения через икс приводит к тому, что это уравнение обращается в тождество. Так. приведённое выше уравнение неявно определяет следующие функции:

После подстановки выражения игрека в квадрате через икс в первоначальное уравнение получаем тождество:

.

Выражения, которые мы подставляли, получились путём решения уравнения относительно игрека.

Если бы мы стали дифференцировать соответствующую явную функцию

то получили бы ответ как в примере 1 - от функции, заданной неявно:

Но не всякую функцию, заданную неявно, можно представить в виде y = f (x ) . Так, например, заданные неявно функции

не выражаются через элементарные функции, то есть эти уравнения нельзя разрешить относительно игрека. Поэтому и существует правило дифференцирования функции, заданной неявно, которое мы уже изучили и далее будем последовательно применять в других примерах.

Пример 2. Найти производную функции, заданной неявно:

.

Выражаем игрек штрих и - на выходе - производная функции, заданной неявно:

Пример 3. Найти производную функции, заданной неявно:

.

Решение. Дифференцируем обе части уравнения по иксу:

.

Пример 4. Найти производную функции, заданной неявно:

.

Решение. Дифференцируем обе части уравнения по иксу:

.

Выражаем и получаем производную:

.

Пример 5. Найти производную функции, заданной неявно:

Решение. Переносим слагаемые в правой части уравнение в левую часть и справа оставляем ноль. Дифференцируем обе части уравнения по иксу.