Красота глаз Очки Россия

При повреждении какого органа нарушается синтез белка. Влияние ксенобиотиков на ферменты


Показания Эмпирическая терапия (часто в сочетании с β-лактамами) Специфическая терапия: Чума(стрептомицин) Туляремия (стрептомицин, гентамицин) Бруцеллез (стрептомицин) Туберкулез (стрептомицин, канамицин) Антибиотикопрофилактика (деконтаминация colon) Противопоказания Гиперчувствительность к аминогликозидам


Побочные реакции СКФ, дизурия Ототоксичность Вестибулотоксичность Блокада нервно-мышечной передачи Общие нарушения со стороны ЦНС Аллергические реакции -редко С осторожностью Беременность (стрептомицин!) Грудные и недоношенные дети Старческий возраст Нефропатология Паркинсонизм, миастения, ботулизм(!)






Спектр активности Активен в отношении Гр+ флоры: Staphylococcus spp. Staphylococcus Streptococcus spp Streptococcus Гр- флоры: Neisseria gonorrhoeae Neisseria meningitidis Neisseria gonorrhoeaeNeisseria meningitidis Escherichia coli Haemophilus influenzae Salmonella spp.Shigella spp. SalmonellaShigella Klebsiella spp. Klebsiella Serratia spp. Serratia Yersinia spp. Yersinia Proteus spp. Proteus Rickettsiaspp. Rickettsia Spirochaetaceae, некоторых крупных вирусов.




Побочные эффекты Со стороны системы кроветворения: тромбоцитопения, лейкопения, агранулоцитоз, апластическая анемия. Со стороны пищеварительной системы: тошнота, рвота, диарея, метеоризм. Со стороны ЦНС и периферической нервной системы: периферический неврит, неврит зрительного нерва, головная боль, депрессия, спутанность сознания, делирий, зрительные и слуховые галлюцинации. Аллергические реакции: кожная сыпь, крапивница, ангионевротический отек. Местные реакции: раздражающее действие (при наружном или местном применении). Прочие: вторичная грибковая инфекция, коллапс (у детей до 1 года). Доказана канцерогенность в больших дозах статистически достоверно вызывает лейкемию








Спектр активности Активны в отношении: Гр+ кокков, в т.ч. S. aureus (кроме MRSA) Возбудителей коклюша, дифтерии, моракселлы Campylobacter Mycoplasma, ureaplasma Chlamydia и др. Неактивны в отношении семейств: Enterobacteriaceae spp. Pseudomonas spp. Acinetobacter spp.


Показания Инфекции дыхательной системы Коклюш Дифтерия ИППП Тяжелая угревая сыпь (эритромицин,азитромицин) Инфекционный гастрит Профилактика и лечение микобактериоза у больных со СПИД Противопоказания Гиперчувствительность к макролидам Беременность Грудное вскармливание


Побочные реакции ЖКТ: боли, тошнота, рвота, диарея Печень: активности трансаминаз, холестаз, гепатит ЦНС: головная боль, головокружение Сердце: аритмогенное действие (редко) Местные реакции: флебит и тромбофлебит (нельзя вводить струйно конц. растворы!) Аллергические реакции С осторожностью Дети до 1 года Почечная и печеночная недостаточность








Показания Хламидийные инфекции Угревая сыпь Особо опасные инфекции (в сочетании с стрептомицином) Антропозоонозы Сифилис(при аллергии к пенициллину) Лептоспироз Профилактика малярии Противопоказания Дети до 8-ми лет Беременные и кормящие женщины Патология почек и печени


Побочные реакции ЖКТ: боли, тошнота, рвота, диарея ЦНС: головокружение, внутричерепного давления Печень: развитие стеатоза Аллергические реакции, фотосенситизация Местные реакции: тромбофлебиты Дисбиозы, нарушение формирования костей, дисколорация зубов, почернение языка, атрофия сосочков языка и т.д.










Побочные реакции ЖКТ: боли, диарея, тошнота, рвота, псевдомембранозный колит Аллергические реакции Гематологические реакции: нейтропения, тромбоцитопения С осторожностью Неонтология – синдром фатальной асфиксии (бензиловый спирт в составе р-ра для инъекций клиндамицина)






Механизм действия Бактериостатическое действие, в больших концентрациях - бактерицидное: ингибируют ДНК-зависимую РНК-полимеразу (ее β- субъединицу) Резистентность: 1. Плазмиды 2. Мутации: rpoB (изменения последовательности ароматических аминокислот) РНК-полимераза Угнетение синтеза РНК


Спектр активности Антибиотик широкого спектра действия, с наиболее выраженной активностью в отношении микобактерий туберкулеза, атипичных микобактерий различных видов, грамположительных кокков. Грамотрицательные кокки - N.meningitidis и N.gonorrhoeae Активен в отношении H.influenzae, H.ducreyi, B.pertussis, B.anthracis, L.monocytogenes, F.tularensis, легионелл, риккетсий.


Показания туберкулез легких и других органов Различные формы лепры бронхит, пневмония, вызываемые полирезистентными (устойчивыми к большинству антибиотиков) стафилококками остеомиелите инфекции моче- и желчевыводящих путей острая гонорея другие заболевания, вызванные чувствительными к рифампицину возбудителями.




Побочные эффекты ЖКТ: понижение аппетита, тошнота, рвота, диарея (как правило, време нные). Печень: повышение активности трансаминаз и уровня билирубина в кр ови; редко - лекарственный гепатит. Аллергические реакции: сыпь, эозинофилия, отек Квинке; кожный синд ром (в начале лечения), проявляющийся покраснением, зудом кожи ли ца и головы, слезотечением. Гриппоподобный синдром: головная боль, лихорадка, боль в костях (ча ще развиваются при нерегулярном приеме). Гематологические реакции: тромбоцитопеническая пурпура (иногда с кровотечением при интермиттирующей терапии); нейтропения (чаще у пациентов, получающих рифампицин в комбинации с пиразинамидом и изониазидом). Почки: обратимая почечная недостаточность.






Полиены Полиены обладают самым широким среди противогрибковых препаратов спектром активности in vitro. Полиены активны также в отношении некоторых простейших трихомонад (натамицин), лейшманий и амеб (амфотерицин В). Амфотерицин В Пимафуцин Нистатин Леворин


Механизм действия в зависимости от концентрации, могут оказывать как фунгистатическое, так и фунгицидное действие: связыванием препарата с эргостеролом грибковой мембраны, что ведет к нарушению ее целостности, потере содержимого цитоплазмы и гибели клетки. Нарушение целостности ЦПМ Гибель клетки


Спектр активности Полиены обладают самым широким среди противогрибковых препаратов спектром активности in vitro. При системном применении (амфотерицин В) чувствительны Candida spp. (среди C.lusitaniae встречаются устойчивые штаммы), Aspergillus spp. (A.terreus может быть устойчивым) C.neoformans возбудители мукомикоза (Mucor spp., Rhizopus spp. и др.), S.Schenckii возбудители эндемических микозов (B.dermatitidis, H.capsulatum, C.immitis, P.bra siliensis) Однако при местном применении (нистатин, леворин, натамицин) они действуют преимущественно на Candida spp. Полиены активны также в отношении некоторых простейших: трихомонад (натамицин), лейшманий и амеб (амфотерицин В).


Показания Нистатин, леворинНатамицинАмфотерицин В Кандидоз кожи инвазивный кандидоз Кандидоз полости рта аспергиллез Кандидоз кишечника криптококкоз, Кандидозный вульвовагинит споротрихоз Кандидозный баланопостит мукормикоз Трихомонадный вульвовагинит трихоспороз фузариоз феогифомикоз


Противопоказания Для всех полиенов Аллергические реакции на препараты группы полиенов. Дополнительно для амфотерицина В 1. Нарушения функции печени. 2. Нарушения функции почек. 3. Сахарный диабет. Все противопоказания относительны, поскольку амфотерицин В практически всегда применяется по жизненным показаниям.


Побочные эффекты Нистатин, леворин, натамицин ЖКТ: боль в животе, тошнота, рвота, диарея. Аллергические реакции: сыпь, зуд, синдром Стивенса–Джонсона (редко). Раздражение кожи и слизистых оболочек, сопровождающееся ощущением жжения. Амфотерицин В Реакции на в/в инфузию: лихорадка, озноб, тошнота, рвота, головная боль, гипотензия. Почки: нарушение функции понижение диуреза или полиурия. Печень: возможен гепатотоксический эффект. Нарушения электролитного баланса: гипокалиемия, гипомагниемия. Гематологические реакции: чаще всего анемия, реже лейкопения, тромбоцитопения. ЖКТ: боль в животе, анорексия, тошнота, рвота, диарея. Нервная система: головная боль, головокружение, парезы, нарушение чувствительности, тремор, судороги. Аллергические реакции: сыпь, зуд, бронхоспазм. 45








Показания Полимиксин В: Синегнойная палочка (резистентная к аминогликозидам, цефалоспоринам) Тяжелая госпитальная инфекция, вызванная Гр- флорой (кроме протейной!) Полимиксин М – не используется Противопоказания Почечная недостаточность Миастения Ботулизм


Побочные реакции Почки: нефротоксичность, о. тубулярный некроз ЦНС: парестезии, головокружения, нарушение сознания, слуха Возможна блокада нервно-мышечной передачи Местные реакции: болезненность, тромбофлебиты Аллергические реакции С осторожностью Беременность и кормление грудью Дети Лица старческого возраста

Третья форма нарушений белкового обмена - диспротеинозы, то есть состояния, при которых образование белков не усилено и не ослаблено, а извращено. Такие ситуации чрезвычайно разнообразны. К ним, например, относятся различные формы гемоглобинозов, - патологические процессы, в основе которых лежит наличие в крови одного или нескольких аномальных гемоглобинов, то есть таких гемоглобинов, синтез которых ненормален, в результате чего образуется специфический белок с совершенно новыми свойствами (сниженный тропизм к кислороду, пониженная растворимость и т.д.).

Диспротеинозом, имеющим большое клиническое значение, является амилоидоз.

Этот патологический процесс представляет собой одну из форм нарушений белкового обмена, при которой в межтканевых щелях, по ходу сосудов и в их стенке, около мембран железистых органов откладывается особое вещество - амилоид, имеющее белково-полисахаридную природу. Амилоид резко нарушает функцию органов по месту своего отложения и может приводить не только к возникновению в организме тяжелых расстройств, связанных с патологией этих органов, но и к гибели последних.

Амилоидоз имеет достаточно широкое распространение. Помимо не очень часто встречающегося первичного амилоидоза (причина которого не выяснена), наследственных форм этого патологического процесса и старческого амилоидоза, являющегося результатом возрастных изменений у людей весьма преклонных лет, существует вторичный амилоидоз, представляющий собой следствие длительно протекающих воспалительных заболеваний Частота распространения вторичного амилоидоза в последние десятилетия прогрессивно нарастает.

Впервые изменения органов при амилоидозе были описаны в 1844 г. выдающимся венским патологом Карлом Рокитанским, который назвал этот патологический процесс сальным перерождением, подчеркнув тем самым, что при нем грубым изменениям подвергается структура многих внутренних органов. В 1858 г. Рудольф Вирхов выделил это заболевание в самостоятельную нозологическую форму и ввел сам термин - амилоидоз (от лат. amilum - крахмал). В 1894 г. Н. П. Кравков установил химическую структуру амилоида, показав, что это - сложное, комплексное вещество, представляющее собой белок, связанный с полисахаридом типа хондроитинсерной кислоты.

Вторичный амилоидоз возникает в результате наличия в организме хронических воспалительных (особенно - нагноительных) заболеваний (остеомиелит, кавернозчый туберкулез, сифилис, хронические нагноительные процессы в легких, ревматоидный полиартрит и т.д.). Нередкими этиологическими факторами амилоидоза также являются проказа малярия, хроническая дизентерия. Сам амилоидоз возникает через довольно большой срок после начала основного заболевания. Данный латентный период амилоидоза в среднем равняется 2-4 годам, но может затягиваться и на десятилетия. Далее следует период, в начале которого превалируют симптомы, свойственные основному патологическому процессу, а затем начинают проявляться нарушения функции того органа, в котором особенно сильно откладывается амилоид. Этому, как правило, предшествует выраженная альбуминурия (выделение белка с мочой), которая в ряде случаев длительное время является единственным симптомом заболевания, в связи с чем данная стадия амилоидоза носит название альбуминурической.

Следующая стадия амилоидоза характеризуется вовлечением в процесс печени и надпочечников, что ведет к развитию прогрессирующей белковой недостаточности. сопровождаемой гипопротеинемическими отеками, и сосудистой гипотонии. В соответствии с указанными симптомами эта стадия называется отечно-гипотонической.

Затем наступает заключительная стадия процесса, характеризующаяся нарастанием почечной недостаточности и развитием уремии (заключительная стадия почечной недостаточности), от которой больные и погибают. Поскольку при уремии в крови резко нарастает количество остаточного азота, терминальную фазу амилоидоза называют азотемической.

Откладывающийся в органах амилоид представляет по своему химическому составу глюкопротеид, в котором белок глобулин связан с мукополисахаридом - хондроитинсерной или мукоитинсерной кислотой. По своей структуре амилоид макроскопически выглядит как гомогенное вещество, однако он имеет субмикроскопическую, сходную с кристаллической, структуру. Амилоид состоит из пучков фибрилл, имеющих у человека длину от 1200 до 5000 нм и ширину 70-140 нм. Амилоидные фибриллы имеют упорядоченное (наракристаллическое) строение. Кроме того, в амилоиде выявлены сферические частицы, находящиеся вне связи с фибриллами.

Что касается патогенеза амилоидоза и механизмов образования амилоида, то в самом общем плане они сводятся к следующему.

Твердо установлено, что в основе развития амилоидоза лежит диспротеиноз. Полагают, что при хронических нагноительных заболеваниях нарушается белковый состав крови, в результате чего в ней появляется большое количество грубодисперсных белков, относящихся к группе гамма-глобулинов. Этот факт, а также и то, что вторичный амилоидоз является следствием заболеваний инфекционного характера, позволяет предполагать участие в патогенезе этого патологического процесса иммунологических механизмов. Данная мысль подтверждается также и тем, что при воспроизведении амилоидоза в эксперименте наблюдается выраженная пролиферация элементов ретикуло-эндотелиальной системы (РЭС). Рядом точных иммунологических и гистохимических исследований было показано, что клетки РЭС в процессе развития амилоидоза претерпевают определенную динамику. Вначале, при длительном антигенном стимуле возникает их пролиферация и трансформация в плазматические клетки. Гистохимические реакции, проводимые в этот период, показывают наличие в этих клетках пиронинофилии, свидетельствующей о нарастании в них количества РНК. По времени пиронинофилия совпадает с гамма-глобулинемией. Указанный комплекс изменений составляет предамилоидную стадию, которая при дальнейшем сохранении антигенного стимула переходит во вторую - амилоидную стадию, в течение которой пиронинофилия клеток уменьшается, что говорит об уменьшении в них количества РНК. но зато нарастает количество клеток, дающих PAS - положительную реакцию, которая выявляет полисахариды. Следовательно, в этот период в плазматических клетках происходит усиленное образование полисахаридов. Далее эти клетки начинают секретировать в окружающие ткани амилоид, являющийся нерастворимым соединением. Таким образом, амилоид не является продуктом соединения (вне сосудистого русла) глобулинов крови, диффундировавших через сосудистую стенку, с полисахаридным компонентом, как это полагали ранее, а секретируется на месте плазматическими клетками. Электронно-микроскопические исследования показывают, что в клетках РЭС происходит накопление предшественника амилоида - амилоидных фибрилл. По мере нарастания в клетке количества этих фибрилл развивается ее дегенерация с полной потерей собственной структуры. Далее оболочка клетки разрывается, фибриллы попадают в межклеточное пространство, где соединяются с секретированной этими же клетками полисахаридной субстанцией, в результате чего и образуется амилоид.

При амилоидозе обнаруживаются антитела к тканям того органа, в котором отлагается амилоид. В связи с этим можно предположить наличие в патогенезе амилоидоза и аутоиммунного компонента.

Нельзя забывать о возможном включении в динамику развития амилоидоза и неврогенного компонента. Об этом весьма убедительно свидетельствуют наблюдения, проведенные в блокадном и посблокадном Ленинграде. Статистические данные показывают, что во время блокады, когда, во-первых, было тяжелое голодание, а во-вторых, состояние чрезвычайного нервного напряжения, количество случаев амилоидоза было минимальным. Зато после окончания войны у лиц, перенесших блокаду, наблюдался резкий подъем заболеваемости амилоидозом, который значительно превысил довоенный уровень.

Поскольку амилоидоз развивается лишь у относительно небольшой части лиц, страдающих хроническими воспалительными заболеваниями, нельзя исключать роли наследственного фактора в его патогенезе.

Известно, что белки подвергаются гидролизу под влиянием эндо- и экзопептидаз, образующихся в желудке, поджелудочной железе и кишечнике. Эндопептидазы (пепсин, трипсин и химотрипсин) вызывают расщепление белка в средней его частин до альбумоз и пептонов. Экзопептидазы (карбопептидаза, аминопептидаза и дипептидаза), образующиеся в поджелудочной железе и тонком кишечнике, обеспечивают отщепление концевых участков белковых молекул и продуктов их распада до аминокислот, всасывание которых происходит в тонком кишечнике с участием АТФ.

Нарушения гидролиза белков могут быть вызваны многими причинами: воспаление, опухоли желудка, кишечника, поджелудочной железы; резекции желудка и кишечника; общие процессы типа лихорадки, перегревания, гипотермии; при усилении перистальтики вследствие расстройств нейроэндокринной регуляции. Все вышеназванные причины ведут к дефициту гидролитических ферментов или ускорению перистальтики, когда пептидазы не успевают обеспечить расщепление белков.

Нерасщепленные белки поступают в толстый кишечник, где под влиянием микрофлоры начинаются процессы гниения, приводящие к образованию активных аминов (кадаверин, тирамин, путресцин, гистамин) и ароматических соединений типа индола, скатола, фенола, крезола. Эти токсические вещества обезвреживаются в печени путем соединения с серной кислотой. В условиях резкого усиления процессов гниения возможна интоксикация организма.

Нарушения всасывания обусловлены не только расстройствами расщепления, но и дефицитом АТФ, связанным с торможением сопряжения дыхания и окислительного фосфорилирования и блокадой данного процесса в стенке тонкого кишечника при гипоксии, отравлениях флоридзином, монойодацетатом.

Нарушения расщепления и всасывания белков, так же как и недостаточное поступление белков в организм, ведут к белковому голоданию, нарушению синтеза белка, анемии, гипопротеинемии, склонности к отекам, недостаточности иммунитета. В результате активации системы гипоталамус-гипофиз-кора надпочечников и гипоталамо-гипофизарно-тиреоидной системы увеличивается образование глюкокортикоидов и тироксина, которые стимулируют тканевые протеазы и распад белка в мышцах, желудочно-кишечном тракте, лимфоидной системе. Аминокислоты при этом могут служить энергетическим субстратом и, кроме того, усиленно выводятся из организма, обеспечивая формирование отрицательного азотистого баланса. Мобилизация белка является одной из причин дистрофии, в том числе в мышцах, лимфоидных узлах, желудочно-кишечном тракте, что усугубляет нарушение расщепления и всасывания белков.

При всасывании нерасщепленного белка возможна аллергизация организма. Так, искусственное вскармливание детей нередко ведет к аллергизации организма по отношению к белку коровьего молока и другим белковым продуктам. Причины, механизмы и последствия нарушений расщепления и всасывания белков представлены на схеме 8.

Схема 8. Нарушения гидролиза и всасывания белков
Нарушения гидролиза Нарушения всасывания
Причины Воспаление, опухоли, резекции желудка и кишечника, усиление перистальтики (нервные влияния, снижение кислотности желудка, прием недоброкачественной пищи)
Механизмы Дефицит эндопептидаз (пепсин, трипсин, химотрипсин) и экзопептидаз (карбо-, амино- и дипептидазы) Дефицит АТФ (всасывание аминокислот - активный процесс и происходит с участием АТФ)
Последствия Белковое голодание -> гипопротеинемия отеки, анемия; нарушение иммунитета -> склонность к инфекционным процессам; диарея, нарушение транспорта гормонов.

Активация катаболизма белков -> атрофия мышц, лимфоидных узлов, желудочно-кишечного тракта с последующим усугублением нарушений процессов гидролиза и всасывания не только белков, витаминов, но и других веществ; отрицательный азотистый баланс.

Всасывание нерасщепленного белка -> аллергизация организма.

При поступлении нерасщепленных белков в толстый кишечник усиливаются процессы бактериального расщепления (гниения) с образованием аминов (гистамин, тирамин, кадаверин, путресцин) и ароматических токсических соединений (индол, фенол, крезол, скатол)

Этот тип патологических процессов включает недостаточность синтеза, усиление распада белков, нарушения превращения аминокислот в организме.

  • Нарушение синтеза белка.

    Биосинтез белков происходит на рибосомах. С участием транспортной РНК и АТФ на рибосомах образуется первичный полипептид, в котором последовательность включения аминокислот определяется ДНК. Синтез альбуминов, фибриногена, протромбина, альфа- и бета-глобулинов происходит в печени; гамма-глобулины образуются в клетках ретикулоэндотелиальной системы. Нарушения синтеза белка наблюдаются при белковом голодании (в результате голодания или нарушения расщепления и всасывания), при поражении печени (расстройства кровообращения, гипоксия, цирроз, токсико-инфекционные поражения, дефицит анаболических гормонов). Важной причиной является наследственно обусловленное поражение В-системы иммунитета, при котором блокировано образование гамма-глобулинов у мальчиков (наследственные агаммаглобулинемии).

    Недостаточность синтеза белка приводит к гипопротеинемии, нарушению иммунитета, дистрофическим процессам в клетках, возможно замедление свертываемости крови из-за уменьшения фибриногена и протромбина.

    Увеличение синтеза белка обусловлено избыточной продукцией инсулина, андрогенов, соматотропина. Так, при опухоли гипофиза с вовлечением эозинофильных клеток образуется избыток соматотропина, что приводит к активации синтеза белка и усилению процессов роста. Если избыточное образование соматотропина происходит в организме с незавершенным ростом, то усиливается рост тела и органов, проявляющийся в виде гигантизма и макросомии. Если усиление секреции соматотропина происходит у взрослых, то увеличение синтеза белка приводит к росту выступающих частей тела (кистей, стоп, носа, ушей, надбровных дуг, нижней челюсти и т. д.). Это явление получило название акромегалии (от греч. acros - кончик, megalos - большой). При опухоли сетчатой зоны коры надпочечников, врожденном дефекте образования гидрокортизона, а также опухоли семенников усиливается образование адрогенов и активируется синтез белка, что проявляется в увеличении объема мускулатуры и раннем формировании вторичных половых признаков. Увеличение синтеза белка является причиной положительного азотистого баланса.

    Увеличение синтеза иммуноглобулинов происходит при аллергических и аутоаллергических процессах.

    В ряде случаев возможно извращение синтеза белка и образование белков, которые в норме не обнаруживаются в крови. Это явление получило название парапротеинемии. Парапротеинемия наблюдается при миеломной болезни, болезни Вальденстрема, некоторых гаммапатиях.

    При ревматизме, тяжелых воспалительных процессах, инфаркте миокарда, гепатите синтезируется новый, так называемый С-реактивный белок. Он не является иммуноглобулином, хотя его появление обусловлено реакцией организма на продукты повреждения клеток.

  • Усиление распада белков.

    При белковом голодании, изолированном увеличении образования тироксина и глюкокортикоидов (гипертиреоз, синдром и болезнь Иценко-Кушинга) активируются тканевые катепсины и распад белка прежде всего, в клетках поперечно-полосатой мускулатуры, лимфоидных узлов, желудочно-кишечного тракта. Образующиеся аминокислоты выделяются в избытке с мочой, что способствует формированию отрицательного азотистого баланса. Избыточная продукция тироксина и глюкокортикоидов проявляется также в нарушении иммунитета и повышенной склонности к инфекционным процессам, дистрофии различных органов (поперечно-полосатой мускулатуры, сердца, лимфоидных узлов, желудочно-кишечного тракта).

    Наблюдения показывают, что за три недели в организме взрослого человека белки обновляются наполовину путем использования аминокислот, поступивших с пищей, и за счет распада и ресинтеза. По данным Мак-Мюррей (1980), при азотистом равновесии ежедневно синтезируется 500 г белков, т. е. в 5 раз больше, чем поступает с пищей. Это может быть достигнуто за счет повторного использования аминокислот, в том числе и образующихся при распаде белков в организме.

    Процессы усиления синтеза и распада белков и их последствия в организме представлены в схемах 9 и 10.

    Схема 10. Нарушение азотистого равновесия
    Положительный азотистый баланс Отрицательный азотистый баланс
    Причины Увеличение синтеза и, как следствие, уменьшение выведения азота из организма (опухоли гипофиза, сетчатой зоны коры надпочечников). Преобладание распада белка в организме и, как следствие, выделение азота в большем количестве по сравнению с поступлением.
    Механизмы Усиление продукции и секреции гормонов, обеспечивающих синтез белка (инсулин, соматотропин, гормоны андрогенного действия). Увеличение продукции гормонов, стимулирующих катаболизм белка путем активации тканевых катепеи-нов (тироксин, глюкокортикоиды).
    Последствия Ускорение процессов роста, преждевременное половое созревание. Дистрофия, в том числе и желудочно-кишечного тракта, нарушение иммунитета.
  • Нарушения превращения аминокислот.

    В ходе межуточного обмена аминокислоты подвергаются трансаминированию, дезаминированию, декарбоксилированию. Трансаминирование направлено на образование новых аминокислот путем переноса аминогруппы на кетокислоту. Акцептором аминогрупп большинства аминокислот является альфа-кетоглютаровая кислота, которая превращается в глютаминовую. Последняя снова может отдавать аминогруппу. Этот процесс контролируется трансаминазами, коферментом которых является пиридоксальфосфат, производное витамина В 6 (пиридоксин). Трансаминазы содержатся в цитоплазме и митохондриях. Донатором аминогрупп является глютаминовая кислота, находящаяся в цитоплазме. Из цитоплазмы глютаминовая кислота поступает в митохондрии.

    Торможение реакций трансаминирования возникает при гипоксии, дефиците витамина В 6 , в том числе при подавлении сульфаниламидами, фтивазидом кишечной микрофлоры, которая частично синтезирует витамин В 6 , а также при токсико-инфекционных поражениях печени.

    При тяжелых повреждениях клеток с явлениями некроза (инфаркт, гепатит, панкреатит) трансаминазы из цитоплазмы поступают в большом количестве в кровь. Так, при остром гепатите, по данным Мак-Мюррея (1980), активность глютамат-алланинтрансферазы в сыворотке крови возрастает в 100 раз.

    Основным процессом, приводящим к разрушению аминокислот (деградации их), является безаминирование, при котором под влиянием ферментов аминооксидаз образуются аммиак и кетокислота, подвергающиеся дальнейшему превращению в цикле трикарбоновых кислот до С0 2 и Н 2 0. Гипоксия, гиповитаминозы С, РР, В 2 , В 6 блокируют распад аминокислот по этому пути, что способствует их увеличению в крови (аминоацидемия) и выделению с мочой (аминоацидурия). Обычно при блокаде дезаминирования часть аминокислот подвергается декарбоксилированию с образованием ряда биологически активных аминов - гистамина, серотонина, гама-амино-масляной кислоты, тирамина, ДОФА и др. Декарбоксилирование тормозится при гипертиреозе и избытке глюкокортикоидов.

В результате дезаминирования аминокислот образуется аммиак, который обладает сильно выраженным цито-токсическим эффектом, особенно для клеток нервной системы. В организме сформирован ряд компенсаторных процессов, обеспечивающих связывание аммиака. В печени из аммиака синтезируется мочевина, являющаяся сравнительно безвредным продуктом. В цитоплазме клеток аммиак связывается глютаминовой кислотой с образованием глютамина. Этот процесс получил название амидирования. В почках аммиак соединяется с ионом водорода и в виде солей аммония удаляется с мочой. Этот процесс, названный аммониогенезом, является одновременно важным физиологическим механизмом, направленным на поддержание кислотно-щелочного равновесия.

Таким образом, в результате дезаминирования и синтетических процессов в печени образуются такие конечные продукты азотистого обмена, как аммиак и мочевина. В ходе превращения в цикле трикарбоновых кислот продуктов межуточного обмена белков - ацетилкоэнзима-А, альфа-кетоглютарата, сукцинилкоэнзима-А, фумарата и оксалоацетата - образуются АТФ, вода и С0 2 .

Конечные продукты азотистого обмена выделяются из организма разными путями: мочевина и аммиак - преимущественно с мочой; вода с мочой, через легкие и потоотделением; С0 2 - преимущественно через легкие и в виде солей с мочой и потом. Эти небелковые вещества, содержащие азот, составляют остаточный азот. В норме его содержание в крови составляет 20-40 мг% (14,3-28,6 ммоль/л).

Основным феноменом нарушений образования и выведения конечных продуктов белкового обмена является увеличение небелкового азота крови (гиперазотемия). В зависимости от происхождения гиперазотемия подразделяется на продукционную (печеночную) и ретенционную (почечную).

Продукционная гиперазотемия обусловлена поражениями печени (воспаление, интоксикации, цирроз, расстройства кровообращения), гипопротеинемией. При этом синтез мочевины нарушается, и аммиак накапливается в организме, оказывая цитотоксический эффект.

Ретенционная гиперазотемия возникает при поражении почек (воспаление, расстройства кровообращения, гипоксия), нарушении оттока мочи. Это ведет к задержке и увеличению в крови остаточного азота. Данный процесс сочетается с активацией альтернативных путей выделения азотистых продуктов (через кожу, желудочно-кишечный тракт, легкие). При ретенционной гиперазотемии увеличение остаточного азота идет преимущественно за счет накопления мочевины.

Нарушения образования мочевины и выделения азотистых продуктов сопровождаются расстройствами водно-электролитного баланса, нарушением функций органов и систем организма, особенно нервной системы. Возможно развитие печеночной или уремической комы.

Причины гиперазотемии, механизмы и изменения в организме при этом представлены на схеме 11.

Схема 11. Нарушения образования и выведения конечных продуктов белкового обмена
ГИПЕРАЗОТЕМИЯ
Печеночная (продукционная) Почечная (ретенционная)
Причины Поражения печени (интоксикации, цирроз, расстройства кровообращения), белковое голодание Нарушение образования мочевины в печени
Механизмы Воспаление почек, расстройства кровообращения, нарушения оттока мочи Недостаточное выделение азотистых продуктов с мочой
Изменения в организме Последствия - Нарушение функции органов и систем, особенно нервной системы. Возможно развитие печеночной или уремической комы.

Механизмы компенсации - Амидирование в клетках, аммониогенез в почках, выделение азотистых продуктов альтернативными путями (через кожу, слизистые, желудочно-кишечный тракт)

Источник : Овсянников В.Г. Патологическая физиология, типовые патологические процессы. Учебное пособие. Изд. Ростовского университета, 1987. - 192 с.

Гидролиза и усвоения белков пищи в ЖКТ.

Нарушение первого этапа белкового обмена

В желудке и кишечнике происходит гидролитическое расщепление белков пищи до пептидов и аминокислот под влиянием ферментов желудочного сока (пепсин), панкреатического (трипсин, химотрипсин, аминопептидазы и карбоксипептидазы) и кишечного (аминопептидаза, дипептидазы) соков. Образующиеся при расщеплении белков аминокислоты всасываются стенкой тонкого кишечника в кровь и потребляются клетками различных органов. Нарушение этих процессов имеет место при заболеваниях желудка (воспалительные и язвенные процессы, опухоли), поджелудочной железы (панкреатиты, закупорка протоков, рак), тонкого кишечника (энтериты, диарея, атрофия Обширные оперативные вмешательства, как удаление желудка или значительной части тонкого кишечника, сопровождаются нарушением расщепления и усвоения белков пищи. Усвоение пищевых белков нарушается при лихорадке вследствие снижения секреции пищеварительных ферментов.

При снижении секреции соляной кислоты в желудке уменьшается набухание белков в желудке и уменьшение превращения пепсиногена в пепсин. Из-за быстрой эвакуации пищи из желудка белки достаточно не гидролизируются до пептидов, т.е. часть белков попадает в двенадцатиперстную кишку в неизменном состоянии. Это также нарушает гидролиз белков в кишечнике.

Недостаточность усвоения белков пищи сопровождается дефицитом аминокислот и нарушением синтеза собственных белков. Недостаток пищевых белков не может быть полностью компенсирован избыточным введением и усвоением каких-либо других веществ, так как белки являются основным источником азота для организма.

Синтез белков происходит в организме непрерывно на протяжении всей жизни, но наиболее интенсивно совершается в период внутриутробного развития, в детском и юношеском возрасте.

Причинами нарушения синтеза белка являются:

Отсутствие достаточного количества аминокислот;

Дефицит энергии в клетках;

Расстройства нейроэндокринной регуляции;

Нарушение процессов транскрипции или трансляции информации о структуре того или иного белка, закодированной в геноме клетки.

Наиболее частой причиной нарушения синтеза белка является недостаток аминокислот в организме вследствие:

1) расстройств пищеварения и всасывания;

2) пониженного содержания белка в пище;

3) питания неполноценными белками, в которых отсутствуют или имеются в незначительном количестве незаменимые аминокислоты, не синтезирующиеся в организме.

Полный набор незаменимых аминокислот имеется в большинстве белков животного происхождения, тогда как растительные белки могут не содержать некоторые из них или содержат недостаточно (например, в белках кукурузы мало триптофана). Недостаток в организме хотя бы одной из незаменимых аминокислот ведет к снижению синтеза того или иного белка даже при изобилии остальных. К незаменимым аминокислотам относятся триптофан, лизин, метионин, изолейцин, лейцин, валин, фенилаланин, треонин, гистидин, аргинин.



Дефицит заменимых аминокислот в пище реже приводит к понижению синтеза белка, так как они могут образовываться в организме из кетокислот, являющихся продуктами метаболизма углеводов, жиров и белков.

Недостаток кетокислот возникает при сахарном диабете, нарушении процессов дезаминирования и трансаминирования аминокислот (гиповитаминоз В 6).

Недостаток источников энергии имеет место при гипоксии, действии разобщающих факторов, сахарном диабете, гиповитаминозе В 1 , дефиците никотиновой кислоты и др. Синтез белка - энергозависимый процесс.

Расстройства нейроэндокринной регуляции синтеза и расщепления белка. Нервная система оказывает на белковый обмен прямое и косвенное действие. При выпадении нервных влияний возникает расстройство трофики клетки. Денервация тканей вызывает: прекращение их стимуляции вследствие нарушения выделения нейромедиаторов; нарушение секреции или действия комедиаторов, обеспечивающих регуляцию рецепторных, мембранных и метаболических процессов; нарушение выделения и действия трофогенов.

Действие гормонов может быть анаболическим (усиливающим синтез белка) и катаболическим (повышающим распад белка в тканях).

Синтез белка увеличивается под действием:

Инсулина (обеспечивает активный транспорт в клетки многих аминокислот - особенно валина, лейцина, изолейцина; повышает скорость транскрипции ДНК в ядре; стимулирует сборку рибосом и трансляцию; тормозит использование аминокислот в глюконеогенезе, усиливает митотическую активность инсулинзависимых тканей, повышая синтез ДНК и РНК);

Соматотропного гормона (СТГ; ростовой эффект опосредуют соматомедины, вырабатываемые под его влиянием в печени). Основной из них - соматомедин С, который во всех клетках тела повышает скорость синтеза белка. Так стимулируется образование хрящевой и мышечной ткани. В хондроцитах имеются рецепторы и к самому гормону роста, что доказывает его прямое влияние на хрящевую и костную ткань;

Тиреоидных гормонов в физиологических дозах: трийодтиронин, связываясь с рецепторами в ядре клетки, действует на геном и вызывает усиление транскрипции и трансляции. Вследствие этого стимулируется синтез белка во всех клетках тела. Кроме того, тиреоидные гормоны стимулируют действие СТГ;

Половых гормонов, оказывающих СТГ-зависимый анаболический эффект на синтез белка; андрогены стимулируют образование белков в мужских половых органах, мышцах, скелете, коже и ее производных, в меньшей степени - в почках и мозгу; действие эстрогенов направлено в основном на молочные железы и женские половые органы. Следует отметить, что анаболический эффект половых гормонов не касается синтеза белка в печени.

Распад белка повышается под влиянием:

Тиреоидных гормонов при повышенной их продукции (гипертиреоз);

Глюкагона (уменьшает поглощение аминокислот и повышает распад белков в мышцах; в печени активирует протеолиз, а также стимулирует глюконеогенез и кетогенез из аминокислот; тормозит анаболический эффект СТГ);

Катехоламинов (способствуют распаду мышечных белков с мобилизацией аминокислот и использованием их печенью);

Глюкокортикоидов (усиливают синтез белков и нуклеиновых кислот в печени и повышают распад белков в мышцах, коже, костях, лимфоидной и жировой ткани с высвобождением аминокислот и вовлечением их в глюконеогенез. Кроме того, они угнетают транспорт аминокислот в мышечные клетки, снижая синтез белка).

Анаболическое действие гормонов осуществляется в основном путем активации определенных генов и усилением образования различных видов РНК (информационная, транспортная, рибосомальная), что ускоряет синтез белков; механизм катаболического действия гормонов связан с повышением активности тканевых протеиназ.

Длительное и значительное понижение синтеза белка приводит к развитию дистрофических и атрофических нарушений в различных органах и тканях вследствие недостаточного обновления структурных белков. Замедляются процессы регенерации. В детском возрасте тормозятся рост, физическое и умственное развитие. Снижается синтез различных ферментов и гормонов (СТГ, антидиуретический и тиреоидный гормоны, инсулин и др.), что приводит к эндокринопатиям, нарушению других видов обмена (углеводного, водно-солевого, основного). Понижается содержание белков в сыворотке крови в связи со снижением их синтеза в гепатоцитах. Уменьшается продукция антител и других защитных белков и, как следствие, снижается иммунологическая реактивность организма.

Причины и механизм нарушения синтеза отдельных белков. В большинстве случаев эти нарушения имеют наследственную природу. В основе их лежит отсутствие в клетках информационной РНК (иРНК), специфической матрицы для синтеза какого-либо определенного белка, или нарушение ее структуры вследствие изменения структуры гена, на котором она синтезируется. Генетические нарушения, например замена или потеря одного нуклеотида в структурном гене, приводят к синтезу измененного белка, нередко лишенного биологической активности.

К образованию аномальных белков могут привести отклонения от нормы в структуре иРНК, мутации транспортной РНК (тРНК), вследствие чего к ней присоединяется несоответствующая аминокислота, которая и будет включаться в полипептидную цепь при ее сборке (например, при образовании гемоглобина).

Причины, механизм и последствия повышенного распада тканевых белков. Наряду с синтезом в клетках организма постоянно происходит деградация белков под действием протеиназ. Обновление белков за сутки у взрослого человека составляет 1-2% общего количества белка в организме и связано преимущественно с деградацией мышечных белков, при этом 75-80% освободившихся аминокислот вновь используется для синтеза.

Обеспечение организма белками из нескольких источников определяет разнообразную этиологию нарушений белкового обмена. Последние могут носить первичный или вторичный характер.

Одной из наиболее частых причин общих нарушений белкового обмена является количественная или качественная белковая недостаточность первичного (экзогенного) происхождения. Дефекты, связанные с этим, обусловлены ограничением поступления экзогенных белков при полном или частичном голодании, низкой биологической ценностью пищевых белков, дефицитом незаменимых аминокислот (валина, изолейцина, лейцина, лизина, метионина, треонина, триптофана, фенилаланина, гистидина, аргинина).

При некоторых заболеваниях нарушения белкового обмена могут развиваться в результате расстройства переваривания и всасывания белковых продуктов (при гастроэнтеритах, язвенном колите), повышенного распада белка в тканях (при стрессе, инфекционных болезнях), усиленной потери эндогенных белков (при кровопотерях, нефрозе, травмах), нарушения синтеза белка (при гепатитах). Следствием указанных нарушений часто является вторичная (эндогенная) белковая недостаточность с характерным отрицательным азотистым балансом.

При длительной белковой недостаточности резко нарушается биосинтез белков в различных органах, что ведет к патологическим изменениям обмена веществ в целом.

Белковая недостаточность может развиться и при достаточном поступлении белков с пищей, но при нарушении белкового обмена.

Она может быть обусловлена:

  • нарушением расщепления и всасывания белков в ЖКТ;
  • замедлением поступления аминокислот в органы и ткани;
  • нарушением биосинтеза белка; нарушением промежуточного обмена аминокислот;
  • изменением скорости распада белка;
  • патологией образования конечных продуктов белкового обмена.

Нарушения расщепления и всасывания белков.

В пищеварительном тракте белки расщепляются под влиянием протеолитических ферментов. При этом, с одной стороны, белковые вещества и другие азотистые соединения, входящие в состав пищи, теряют свои специфические особенности, с другой стороны, из белков образуются аминокислоты, из нуклеиновых кислот - нуклеотиды и т.д. Образовавшиеся при переваривании пищи или находившиеся в ней азотсодержащие вещества с небольшой молекулярной массой подвергаются всасыванию.

Различают первичные (при различных формах патологии желудка и кишечника - хронических гастритах, язвенной болезни, раке) и вторичные (функциональные) расстройства секреторной и всасывательной функции эпителия в результате отека слизистой оболочки желудка и кишечника, нарушения переваривания белков и всасывания аминокислот в желудочно-кишечном тракте.

Основные причины недостаточного расщепления белков заключаются в количественном уменьшении секреции соляной кислоты и ферментов, снижении активности протеолитических ферментов (пепсина, трипсина, химотрипсина) и связанном с этим недостаточным образованием аминокислот, уменьшении времени их воздействия (ускорение перистальтики). Так, при ослаблении секреции соляной кислоты снижается кислотность желудочного сока, что ведет к уменьшению набухания пищевых белков в желудке и ослаблению превращения пепсиногена в его активную форму - пепсин. В этих условиях часть белковых структур переходит из желудка в двенадцатиперстную кишку в неизмененном состоянии, что затрудняет действие трипсина, химотрипсина и других протеолитических ферментов кишечника. Дефицит ферментов, расщепляющих белки растительного происхождения, ведет к непереносимости злаковых белков (риса, пшеницы и др.) и развитию целиакии.

Недостаточное образование свободных аминокислот из пищевых белков может происходить в случае ограничения поступления в кишечник сока поджелудочной железы (при панкреатите, сдавлении, закупорке протока). Недостаточность функции поджелудочной железы ведет к дефициту трипсина, химотрипсина, карбоангидразы А, Б и других протеаз, воздействующих на длинные полипептидные цепи или расщепляющих короткие олигопептиды, что снижает интенсивность полостного или пристеночного пищеварения.

Недостаточное действие пищеварительных ферментов на белки может возникнуть вследствие ускоренного прохождения пищевых масс по кишечнику при усилении его перистальтики (при энтероколитах) либо уменьшении площади всасывания (при оперативном удалении значительных участков тонкого кишечника). Это ведет к резкому сокращению времени контакта содержимого химуса с апикальной поверхностью энтероцитов, незавершенности процессов энзиматического распада, а также активного и пассивного всасывания.

Причинами нарушения всасывания аминокислот являются повреждение стенки тонкого кишечника (отек слизистой оболочки, воспаление) или неравномерное по времени всасывание отдельных аминокислот. Это ведет к нарушению (дисбалансу) соотношения аминокислот в крови и синтеза белка в целом, поскольку незаменимые аминокислоты должны поступать в организм в определенных количествах и соотношениях. Чаще всего имеет место нехватка метионина, триптофана, лизина и других аминокислот.

Помимо общих проявлений нарушения аминокислотного обмена, могут быть специфические нарушения , связанные с отсутствием конкретной аминокислоты. Так, недостаток лизина (особенно в развивающемся организме) задерживает рост и общее развитие, понижает содержание в крови гемоглобина и эритроцитов. При недостатке в организме триптофана возникает гипохромная анемия. Дефицит аргинина приводит к нарушению сперматогенеза, а гистидина - к развитию экземы, отставанию в росте, угнетению синтеза гемоглобина.

Кроме того, недостаточное переваривание белка в верхних отделах желудочно-кишечного тракта сопровождается усилением перехода продуктов его неполного расщепления в толстый кишечник и ускорением процесса бактериального расщепления аминокислот. В результате увеличивается образование ядовитых ароматических соединений (индола, скатола, фенола, крезола) и развивается общая интоксикация организма этими продуктами гниения.

Замедление поступления аминокислот в органы и ткани.

Всосавшиеся из кишечника аминокислоты поступают непосредственно в кровь и частично в лимфатическую систему, представляя собой запас разнообразных азотистых веществ, которые затем участвуют во всех видах обмена. В норме аминокислоты, всосавшиеся в кровь из кишечника, циркулируют в крови 5 - 10 мин и очень быстро поглощаются печенью и частично другими органами (почками, сердцем, мышцами). Увеличение времени этой циркуляции указывает на нарушение способности тканей и органов (в первую очередь печени) поглощать аминокислоты.

Поскольку ряд аминокислот является исходным материалом при образовании биогенных аминов, задержка их в крови создает условия для накопления в тканях и крови соответствующих протеиногенных аминов и проявления их патогенного действия на различные органы и системы. Повышенное содержание в крови тирозина способствует накоплению тирамина, который участвует в патогенезе злокачественной гипертонии. Длительное повышение содержания гистидина ведет к увеличению концентрации гистамина, что способствует нарушению кровообращения и проницаемости капилляров. Кроме того, повышение содержания аминокислот в крови проявляется увеличением их выведения с мочой и формированием особой формы нарушений обмена - аминоацидурии. Последняя может быть общей, связанной с повышением концентрации в крови нескольких аминокислот, или избирательной - при увеличении содержания в крови какой-либо одной аминокислоты.

Нарушение синтеза белков.

Синтез белковых структур в организме является центральным звеном метаболизма белка. Даже небольшие нарушения специфичности биосинтеза белка могут вести к глубоким патологическим изменениям в организме.

Среди причин, вызывающих нарушения синтеза белка, важное место занимают различные виды алиментарной недостаточности (полное, неполное голодание, отсутствие в пище незаменимых аминокислот, нарушение количественных соотношений между незаменимыми аминокислотами, поступающими в организм). Если, например, в тканевом белке триптофан, лизин, валин содержатся в равных соотношениях (1:1:1), а с пищевым белком эти аминокислоты поступают в соотношении (1:1:0,5), то синтез тканевого белка будет обеспечиваться при этом только наполовину. При отсутствии в клетках хотя бы одной из 20 незаменимых аминокислот прекращается синтез белка в целом.

Нарушение скорости синтеза белков может быть обусловлено расстройством функции соответствующих генетических структур, на которых происходит этот синтез (транскрипция ДНК, трансляция, репликация). Повреждение генетического аппарата может быть как наследственным, так и приобретенным, возникшим под влиянием различных мутагенных факторов (ионизирующего излучения, ультрафиолетового облучения и др.). Нарушение синтеза белка могут вызывать некоторые антибиотики. Так, ошибки в считывании генетического кода могут возникнуть под влиянием стрептомицина, неомицина и некоторых других антибиотиков. Тетрациклины тормозят присоединение новых аминокислот к растущей полипептидной цепи. Митомицин угнетает синтез белка за счет алкилирования ДНК (образование прочных ковалентных связей между ее цепями), препятствуя расщеплению нитей ДНК.

Одной из важных причин, вызывающих нарушение синтеза белков, может явиться нарушение регуляции этого процесса. Интенсивность и направленность белкового обмена регулируют нервная и эндокринная системы, действие которых заключается, вероятно, в их влиянии на различные ферментные системы. Клинический и экспериментальный опыт показывают, что отключение органов и тканей от ЦНС приводит к местному нарушению процессов обмена в денервированных тканях, а повреждение ЦНС вызывает расстройства белкового обмена. Удаление коры головного мозга у животных ведет к снижению синтеза белка.

Соматотропный гормон гипофиза, половые гормоны и инсулин оказывают стимулирующее воздействие на синтез белка. Наконец, причиной патологии синтеза белка может стать изменение активности ферментных систем клеток, участвующих в биосинтезе белка. В крайне выраженных случаях речь идет о блокировке метаболизма, представляющей собой вид молекулярных расстройств, составляющих основу некоторых наследственных заболеваний.

Результатом действия всех перечисленных факторов является обрыв или снижение скорости синтеза как отдельных белков, так и белка в целом.

Выделяют качественные и количественные нарушения биосинтеза белков. О том. какое значение могут иметь качественные изменения биосинтеза белков в патогенезе различных заболеваний, можно судить на примере некоторых видов анемий при появлении патологических гемоглобинов. Замена только одного аминокислотного остатка (глутамина) в молекуле гемоглобина на валин приводит к тяжелому заболеванию - серповидноклеточной анемии.

Особый интерес представляют количественные изменения в биосинтезе белков органов и крови, приводящие к сдвигу соотношений отдельных фракций белков в сыворотке крови - диспротеинемии. Выделяют две формы диспротеинемий: гиперпротеинемия (увеличение содержания всех или отдельных видов белков) и гипопротеинемия (уменьшение содержания всех или отдельных белков). Так, ряд заболеваний печени (цирроз, гепатит), почек (нефрит, нефроз) сопровождаются выраженным уменьшением содержания альбуминов. Ряд инфекционных заболеваний, сопровождающихся обширными воспалительными процессами, ведет к увеличению содержания γ-глобулинов.

Развитие диспротеинемии сопровождается, как правило, серьезными сдвигами в гомеостазе организма (нарушением онкотического давления, водного обмена). Значительное уменьшение синтеза белков, особенно альбуминов и γ-глобулинов, ведет к резкому снижению сопротивляемости организма к инфекции, снижению иммунологической устойчивости. Значение гипопротеинемии в форме гипоальбуминемии определяется еще и тем, что альбумин образует более или менее прочные комплексы с различными веществами, обеспечивая их транспорт между различными органами и перенос через клеточные мембраны при участии специфических рецепторов. Известно, что соли железа и меди (чрезвычайно токсичные для организма) при pH сыворотки крови трудно растворимы и транспорт их возможен только в виде комплексов со специфическими белками сыворотки (трансферрином и церулоплазмином), что предотвращает интоксикацию этими солями. Около половины кальция удерживается в крови в форме, связанной с альбуминами сыворотки. При этом в крови устанавливается определенное динамическое равновесие между связанной формой кальция и его ионизированными соединениями.

При всех заболеваниях, сопровождающихся снижением содержания альбуминов (заболевания почек) ослабляется и способность регулировать концентрацию ионизированного кальция в крови. Кроме того, альбумины являются носителями некоторых компонентов углеводного обмена (гликопротеиды) и основными переносчиками свободных (неэстерифицированных) жирных кислот, ряда гормонов.

При поражении печени и почек, некоторых острых и хронических воспалительных процессах (ревматизме, инфекционном миокардите, пневмонии) в организме начинают синтезироваться особые белки с измененными свойствами или несвойственные норме. Классическим примером болезней, вызванных наличием патологических белков, являются болезни, связанные с присутствием патологического гемоглобина (гемоглобинозы), нарушения свертывания крови при появлении патологических фибриногенов. К необычным белкам крови относятся криоглобулины, способные выпадать в осадок при температуре ниже 37 °С, что ведет к тромбообразованию. Появление их сопровождает нефроз, цирроз печени и другие заболевания.

Патология промежуточного белкового обмена (нарушение обмена аминокислот).

Основные пути промежуточного обмена белка - это реакции переаминирования, дезаминирования, амидирования, декарбоксилирования, переметилирования, пересульфирования.

Центральное место в промежуточном обмене белков занимает реакция переаминирования, как основной источник образования новых аминокислот.

Нарушение переаминирования может возникнуть в результате недостаточности в организме витамина В 6 . Это объясняется тем, что фосфорилированная форма витамина В 6 - фосфопиридоксаль - является активной группой трансаминаз - специфических ферментов переаминирования между амино- и кетокислотами. Беременность, длительный прием сульфаниламидов тормозят синтез витамина В 6 и могут послужить причиной нарушения обмена аминокислот.

Патологическое усиление реакции переаминирования возможно в условиях повреждения печени и инсулиновой недостаточности, когда значительно увеличивается содержание свободных аминокислот. Наконец, снижение активности переаминирования может произойти в результате угнетения активности трансаминаз из-за нарушения синтеза этих ферментов (при белковом голодании) либо нарушения регуляции их активности со стороны некоторых гормонов. Так, тирозин (незаменимая аминокислота), поступающий с белками пищи и образующийся из фенилаланина, частично окисляется в печени до фумаровой и ацетоуксусной кислот. Однако это окисление тирозина совершается только после его переампнирования с α-кетоглутаровой кислотой. При белковом истощении переаминирование тирозина заметно ослаблено, вследствие этого нарушено его окисление, что приводит к увеличению содержания тирозина в крови. Накопление тирозина в крови и выделение его с мочой могут быть связаны и с наследственно обусловленным дефектом тирозинаминотрансферазы. Клиническое состояние, развивающееся в результате этих нарушений, известно под названием «тирозиноз». Для болезни характерны цирроз печени, рахитоподобные изменения костей, геморрагии, поражения канальцев почек.

Процессы переаминирования аминокислот тесно связаны с процессами окислительного дезаминирования . в ходе которого происходит ферментативное отщепление аммиака от аминокислот. Дезаминирование определяет образование конечных продуктов белкового обмена и вступление аминокислот в энергетический обмен. Ослабление дезаминирования может возникнуть вследствие нарушения окислительных процессов в тканях (гипоксии, гиповитаминозов С, РР, В 2). Однако наиболее резкое нарушение дезаминирования наступает при понижении активности аминооксидаз либо вследствие ослабления их синтеза (диффузное поражение печени, белковая недостаточность), либо в результате относительной недостаточности их активности (увеличение содержания в крови свободных аминокислот). Вследствие нарушения окислительного дезаминирования аминокислот происходит ослабление мочевинообразования, повышение концентрации аминокислот и увеличение выведения их с мочой (аминоацидурия).

Промежуточный обмен ряда аминокислот совершается не только в форме переаминирования и окислительного дезаминирования, но и путем их декарбоксилирования (потеря СO 2 из карбоксильной группы) с образованием соответствующих аминов, получивших название «биогенные амины». Так, при декарбоксилировании гистидина образуется гистамин, тирозина - тирамин, 5-гидрокситриптофана - серотонин и т.д. Все эти амины биологически активны и оказывают выраженное фармакологическое действие на сосуды. Если в норме они образуются в малых количествах и довольно быстро разрушаются, то при нарушении декарбоксилирования складываются условия для накопления в тканях и крови соответствующих аминов и проявления их токсического действия. Причинами нарушения процесса декарбоксилирования могут служить усиление активности декарбоксилаз, торможение активности аминооксидаз и нарушение связывания аминов белками.

Изменение скорости распада белка.

Белки организма постоянно находятся в динамическом состоянии: в процессе непрерывного распада и биосинтеза. Нарушение условий, необходимых для реализации этого подвижного равновесия, также может привести к развитию обшей белковой недостаточности.

Обычно полупериод существования разных белков колеблется в пределах от нескольких часов до многих суток. Так, биологическое время уменьшения наполовину альбумина человеческой сыворотки составляет около 15 сут. Величина этого периода в значительной степени зависит от количества белков в пище: при уменьшении со держания белков он увеличивается, а при увеличении - уменьшается.

Значительное увеличение скорости распада белков тканей и крови наблюдается при повышении температуры организма, обширных воспалительных процессах, тяжелых травмах, гипоксии, злокачественных опухолях, что связано либо с действием бактериальных токсинов (в случае инфицирования), либо со значительным увеличением активности протеолитических ферментов крови (при гипоксии), либо токсическим действием продуктов распада тканей (при травмах). В большинстве случаев ускорение распада белков сопровождается развитием в организме отрицательного азотистого баланса в связи с преобладанием процессов распада белков над их биосинтезом.

Патология конечного этапа белкового обмена.

Основными конечными продуктами белкового обмена являются аммиак и мочевина. Патология конечного этапа белкового обмена может проявляться нарушением образования конечных продуктов либо нарушением их выведения.

Рис. 9.3. Схема нарушения синтеза мочевины

Связывание аммиака в тканях организма имеет большое физиологическое значение, так как аммиак обладает токсическим эффектом прежде всего в отношении центральной нервной системы, вызывая ее резкое возбуждение. В крови здорового человека его концентрация не превышает 517 мкмоль/л. Связывание и обезвреживание аммиака осуществляется при помощи двух механизмов: в печени путем образования мочевины , а в других тканях - путем присоединения аммиака к глутаминовой кислоте (посредством аминирования) с образованием глутамина .

Основным механизмом связывания аммиака является процесс образования мочевины в цитруллин-аргининорнитиновом цикле (рис. 9.3).

Нарушения образования мочевины могут наступить в результате снижения активности ферментных систем, участвующих в этом процессе (при гепатитах, циррозе печени), обшей белковой недостаточности. При нарушении мочевинообразования в крови и тканях накапливается аммиак и увеличивается концентрация свободных аминокислот, что сопровождается развитием гиперазотемии . При тяжелых формах гепатитов и цирроза печени, когда резко нарушена ее мочевинообразовательная функция, развивается выраженная аммиачная интоксикация (нарушение функции центральной нервной системы с развитием комы).

В основе нарушения образования мочевины могут лежать наследственные дефекты активности ферментов. Так, увеличение концентрации аммиака (аммониемия) в крови может быть связано с блокированием карбамил-фосфатсинтетазы и орнитинкарбомо-илтрансферазы. катализирующих связывание аммиака и образование орнитина. При наследственном дефекте аргининсукцинатсинтетазы в крови резко увеличивается концентрация цитруллина, в результате с мочой экскретируется цитруллин (до 15 г в сутки), т.е. развивается цитруллинурия .

В других органах и тканях (мышцы, нервная ткань) аммиак связывается в реакции амидирования с присоединением к карбоксильной группе свободных дикарбоновых аминокислот. Главным субстратом служит глутаминовая кислота. Нарушение процесса амидирования может происходить при снижении активности ферментных систем, обеспечивающих реакцию (глутаминаза), или в результате интенсивного образования аммиака в количествах, превосходящих возможности его связывания.

Другим конечным продуктом белкового обмена, образующимся при окислении креатина (азотистое вещество мышц), является креатинин . Нормальное суточное содержание креатинина в моче составляет около 1-2 г.

Креатинурия - повышение уровня креатинина в моче - наблюдается у беременных женщин и у детей в период интенсивного роста.

При голодании, авитаминозе Е, лихорадочных инфекционных заболеваниях, тиреотоксикозе и других заболеваниях, при которых наблюдаются нарушения обмена в мышцах, креатинурия свидетельствует о нарушении креатинового обмена.

Другая общая форма нарушения конечного этапа белкового обмена возникает при нарушении выведения конечных продуктов белкового обмена при патологии почек. При нефритах происходит задержка мочевины и других азотистых продуктов в крови, остаточный азот увеличивается и развивается гиперазотемия. Крайней степенью нарушения экскреции азотистых метаболитов является уремия.

При одновременном поражении печени и почек возникает нарушение образования и выделения конечных продуктов белкового обмена.

Наряду с общими нарушениями белкового обмена при белковой недостаточности могут возникать и специфические нарушения в обмене отдельных аминокислот. Например, при белковой недостаточности резко ослабляется функция ферментов, участвующих в окислении гистидина, а функция гистидиндекарбоксилазы, в результате действия которой из гистидина образуется гистамин, не только не страдает, но, наоборот, усиливается. Это влечет за собой значительное увеличение образования и накопления в организме гистамина. Состояние характеризуется поражением кожи, нарушением сердечной деятельности и функции желудочно-кишечного тракта.

Особое значение для медицинской практики имеют наследственные аминоацидопатии , число которых на сегодня составляет около 60 различных нозологических форм. По типу наследования почти все они относятся к аутосомно-рецессивным. Патогенез обусловлен недостаточностью того или иного фермента, осуществляющего катаболизм и анаболизм аминокислот. Общим биохимическим признаком аминоаиидопатий служит ацидоз тканей и аминоацидурия. Наиболее частыми наследственными дефектами обмена являются четыре вида энзимопатии, которые связаны между собой общим путем метаболизма аминокислот: фенилкетонурия, тирозинемия, альбинизм, алкаптонурия.