Красота глаз Очки Россия

Человеческое зрение. Зрение

Человек не может видеть в полной темноте.
Для того, чтобы человек увидел предмет, необходимо, чтобы свет отразился от предмета и попал на сетчатку глаза. Источники света могут быть естественные (огонь, Солнце) и искусственные (различные лампы). Но что представляет собой свет?
Согласно современным научным представлениям, свет представляет собой электромагнитные волны определенного (достаточно высокого) диапазона частот. Эта теория берет свое начало от Гюйгенса и подтверждается многими опытами (в частности, опытом Т. Юнга). При этом в природе света в полной мере проявляется карпускулярно-волновой дуализм, что во многом определяет его свойства: при распространении свет ведет себя как волна, при излучении или поглощении - как частица (фотон). Таким образом, световые эффекты, происходящие при распространении света (интерференция, дифракция и т.п.), описываются уравнениями Максвелла, а эффекты, проявляющиеся при его поглощении и излучении (фотоэффект, эффект Комптона) - уравнениями квантовой теории поля.
Упрощенно, глаз человека представляет собой радиоприемник, способный принимать электромагнитные волны определенного (оптического) диапазона частот. Первичными источниками этих волн являются тела, их излучающие (солнце, лампы и т.п.), вторичными - тела, отражающие волны первичных источников. Свет от источников попадает в глаз и делает их видимыми человеку. Таким образом, если тело является прозрачным для волн видимого диапазона частот (воздух, вода, стекло и т.п.), то оно не может быть зарегистрировано глазом. При этом глаз, как и любой другой радиоприемник, «настроен» на определенный диапазон радиочастот (в случае глаза это диапазон от 400 до 790 терагерц), и не воспринимает волны, имеющие более высокие (ультрафиолетовые) или низкие (инфракрасные) частоты. Эта «настройка» проявляется во всем строении глаза - начиная от хрусталика и стекловидного тела, прозрачных именно в этом диапазоне частот, и заканчивая величиной фоторецепторов, которые в данной аналогии подобны антеннам радиоприемников и имеют размеры, обеспечивающие максимально эффективный прием радиоволн именно этого диапазона.
Все это в совокупности определяет диапазон частот, в котором видит человек. Он называется диапазоном видимого излучения.
Видимое излучение — электромагнитные волны, воспринимаемые человеческим глазом, которые занимают участок спектра с длиной волны приблизительно от 380 (фиолетовый) до 740 нм (красный). Такие волны занимают частотный диапазон от 400 до 790 терагерц. Электромагнитное излучение с такими частотами также называется видимым светом, или просто светом (в узком смысле этого слова). Наибольшую чувствительность к свету человеческий глаз имеет в области 555 нм (540 ТГц), в зелёной части спектра.

Белый свет, разделённый призмой на цвета спектра

При разложении луча белого цвета в призме образуется спектр, в котором излучения разных длин волн преломляются под разным углом. Цвета, входящие в спектр, то есть такие цвета, которые могут быть получены световыми волнами одной длины (или очень узким диапазоном), называются спектральными цветами. Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице:

В спектре содержатся не все цвета, которые различает человеческий мозг и они образуются от смешения других цветов.[
Чем человек видит

Благодаря зрению мы получаем 90% информации об окружающем мире, поэтому глаз - один из важнейших органов чувств.
Глаз можно назвать сложным оптическим прибором. Его основная задача — "передать" правильное изображение зрительному нерву.



Строение глаза человека

Роговица — прозрачная оболочка, покрывающая переднюю часть глаза. В ней отсутствуют кровеносные сосуды, она имеет большую преломляющую силу. Входит в оптическую систему глаза. Роговица граничит с непрозрачной внешней оболочкой глаза — склерой. См. строение роговицы.
Передняя камера глаза — это пространство между роговицей и радужкой. Она заполнена внутриглазной жидкостью.
Радужка — по форме похожа на круг с отверстием внутри (зрачком). Радужка состоит из мышц, при сокращении и расслаблении которых размеры зрачка меняются. Она входит в сосудистую оболочку глаза. Радужка отвечает за цвет глаз (если он голубой — значит, в ней мало пигментных клеток, если карий — много). Выполняет ту же функцию, что диафрагма в фотоаппарате, регулируя светопоток.
Зрачок — отверстие в радужке. Его размеры обычно зависят от уровня освещенности. Чем больше света, тем меньше зрачок.
Хрусталик — "естественная линза" глаза.

Он прозрачен, эластичен — может менять свою форму, почти мгновенно "наводя фокус", за счет чего человек видит хорошо и вблизи, и вдали. Располагается в капсуле, удерживается ресничным пояском. Хрусталик, как и роговица, входит в оптическую систему глаза. Прозрачность хрусталика глаза человека превосходна - пропускается большая часть света с длинами волн между 450 и 1400 нм. Свет с длиной волны выше720 нм не воспринимается. Хрусталик глаза человека почти бесцветен при рождении, но приобретает желтоватый цвет с возрастом. Это предохраняет сетчатку глаза от воздействия ультрафиолетовых лучей.
Стекловидное тело — гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза. Стекловидное тело поддерживает форму глазного яблока, участвует во внутриглазном обмене веществ. Входит в оптическую систему глаза.
Сетчатка — состоит из фоторецепторов (они чувствительны к свету) и нервных клеток. Клетки-рецепторы, расположенные в сетчатке, делятся на два вида: колбочки и палочки. В этих клетках, вырабатывающих фермент родопсин, происходит преобразование энергии света (фотонов) в электрическую энергию нервной ткани, т.е. фотохимическая реакция.
Склера — непрозрачная внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся 6 глазодвигательных мышц. В ней находится небольшое количество нервных окончаний и сосудов.
Сосудистая оболочка — выстилает задний отдел склеры, к ней прилегает сетчатка, с которой она тесно связана. Сосудистая оболочка ответственна за кровоснабжение внутриглазных структур. При заболеваниях сетчатки очень часто вовлекается в патологический процесс. В сосудистой оболочке нет нервных окончаний, поэтому при ее заболевании не возникают боли, обычно сигнализирующие о каких-либо неполадках.
Зрительный нерв — при помощи зрительного нерва сигналы от нервных окончаний передаются в головной мозг.
Человек не рождается с уже развитым органом зрения: в первые месяцы жизни происходит формирование мозга и зрения, и примерно к 9 месяцам они способны почти моментально обрабатывать поступающую зрительную информацию. Для того чтобы видеть, необходим свет.
Световая чувствительность человеческого глаза

Способность глаза воспринимать свет и распознавать различной степени его яркости называется светоощущением, а способность приспосабливаться к разной яркости освещения — адаптацией глаза; световая чувствительность оценивается величиной порога светового раздражителя.
Человек с хорошим зрением способен разглядеть ночью свет от свечи на расстоянии нескольких километров. Максимальная световая чувствительность достигается после достаточно длительной темновой адаптации. Её определяют под действием светового потока в телесном угле 50° при длине волны 500 нм (максимум чувствительности глаза). В этих условиях пороговая энергия света около 10−9 эрг/с, что эквивалентно потоку нескольких квантов оптического диапазона в секунду через зрачок.
Вклад зрачка в регулировку чувствительности глаза крайне незначителен. Весь диапазон яркостей, которые наш зрительный механизм способен воспринять, огромен: от 10−6 кд.м² для глаза, полностью адаптированного к темноте, до 106 кд.м² для глаза, полностью адаптированного к свету Механизм такого широкого диапазона чувствительности кроется в разложении и восстановлении фоточувствительных пигментов в фоторецепторах сетчатки — колбочках и палочках.
В глазу человека содержатся два типа светочувствительных клеток (рецепторов): высоко чувствительные палочки, отвечающие за сумеречное (ночное) зрение, и менее чувствительные колбочки, отвечающие за цветное зрение.

Нормализованные графики светочувствительности колбочек человеческого глаза S, M, L. Пунктиром показана сумеречная, «чёрно-белая» восприимчивость палочек.

В сетчатке глаза человека есть три вида колбочек, максимумы чувствительности которых приходятся на красный, зелёный и синий участки спектра. Распределение типов колбочек в сетчатке неравномерно: «синие» колбочки находятся ближе к периферии, в то время как «красные» и «зеленые» распределены случайным образом. Соответствие типов колбочек трём «основным» цветам обеспечивает распознавание тысяч цветов и оттенков. Кривые спектральной чувствительности трёх видов колбочек частично перекрываются, что способствует явлению метамерии. Очень сильный свет возбуждает все 3 типа рецепторов, и потому воспринимается, как излучение слепяще-белого цвета.


Равномерное раздражение всех трёх элементов, соответствующее средневзвешенному дневному свету, также вызывает ощущение белого цвета.
За цветовое зрение человека отвечают гены, кодирующие светочувствительные белки опсины. По мнению сторонников трёхкомпонентной теории, наличие трёх разных белков, реагирующих на разные длины волн, является достаточным для цветового восприятия. У большинства млекопитающих таких генов только два, поэтому они имеют черно-белое зрение.
Чувствительный к красному свету опсин кодируется у человека геном OPN1LW.
Другие опсины человека кодируют гены OPN1MW, OPN1MW2 и OPN1SW, первые два из них кодируют белки, чувствительные к свету со средними длинами волны, а третий отвечает за опсин, чувствительный к коротковолновой части спектра.
Бинокулярное и Стереоскопическое зрение

Зрительный анализатор человека в нормальных условиях обеспечивает бинокулярное зрение, то есть зрение двумя глазами с единым зрительным восприятием. Основным рефлекторным механизмом бинокулярного зрения является рефлекс слияния изображения — фузионный рефлекс (фузия), возникающий при одновременном раздражении функционально неодинаковых нервных элементов сетчатки обоих глаз. Вследствие этого возникает физиологическое двоение предметов, находящихся ближе или дальше фиксируемой точки (бинокулярная фокусировка). Физиологичное двоение (фокус) помогает оценивать удалённость предмета от глаз и создает ощущение рельефности, или стереоскопичности, зрения.
При зрении одним глазом восприятие глубины (рельефной удалённости) осуществляется гл. обр. благодаря вторичным вспомогательным признакам удаленности (видимая величина предмета, линейная и воздушная перспективы, загораживание одних предметов другими, аккомодация глаза и т. д..).

Проводящие пути зрительного анализатора
1 — Левая половина зрительного поля, 2 — Правая половина зрительного поля, 3 — Глаз, 4 — Сетчатка, 5 — Зрительные нервы, 6 — Глазодвигательный нерв, 7 — Хиазма, 8 — Зрительный тракт, 9 — Латеральное коленчатое тело, 10 — Верхние бугры четверохолмия, 11 — Неспецифический зрительный путь, 12 — Зрительная кора головного мозга.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв, хиазму, зрительные тракты в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим. Все эти органы и составляют наш зрительный анализатор или зрительную систему.
Психология восприятия цвета

Психология восприятия цвета — способность человека воспринимать, идентифицировать и называть цвета.
Ощущение цвета зависит от комплекса физиологических, психологических и культурно-социальных факторов. Первоначально исследования восприятия цвета проводились в рамках цветоведения; позже к проблеме подключились этнографы, социологи и психологи.
Зрительные рецепторы по праву считаются «частью мозга, вынесенной на поверхность тела». Неосознаваемая обработка и коррекция зрительного восприятия обеспечивает «правильность» зрения, и она же является причиной «ошибок» при оценке цвета в определенных условиях. Так, устранение «фоновой» засветки глаза (например, при разглядывании удаленных предметов через узкую трубку) существенно меняет восприятие цвета этих предметов.
Одновременное рассматривание одних и тех же несамосветящихся предметов или источников света несколькими наблюдателями с нормальным цветовым зрением, в одинаковых условиях рассматривания, позволяет установить однозначное соответствие между спектральным составом сравниваемых излучений и вызываемыми ими цветовыми ощущениями. На этом основаны цветовые измерения (колориметрия). Такое соответствие однозначно, но не взаимно-однозначно: одинаковые цветовые ощущения могут вызывать потоки излучений различного спектрального состава (метамерия).
Определений цвета, как физической величины, существует много. Но даже в лучших из них с колориметрической точки зрения часто опускается упоминание о том, что указанная (не взаимная) однозначность достигается лишь в стандартизованных условиях наблюдения, освещения и т. д., не учитывается изменение восприятия цвета при изменении интенсивности излучения того же спектрального состава (явление Бецольда — Брюкке), не принимается во внимание т. н. цветовая адаптация глаза и др. Поэтому многообразие цветовых ощущений, возникающих при реальных условиях освещения, вариациях угловых размеров сравниваемых по цвету элементов, их фиксации на разных участках сетчатки, разных психофизиологических состояниях наблюдателя и т. д., всегда богаче колориметрического цветового многообразия.
Например, в колориметрии одинаково определяются некоторые цвета (такие, как оранжевый или жёлтый), которые в повседневной жизни воспринимаются (в зависимости от светлоты) как бурый, «каштановый», коричневый, «шоколадный», «оливковый» и т. д. В одной из лучших попыток определения понятия Цвет, принадлежащей Эрвину Шрёдингеру, трудности снимаются простым отсутствием указаний на зависимость цветовых ощущений от многочисленных конкретных условий наблюдения. По Шредингеру, Цвет есть свойство спектрального состава излучений, общее всем излучениям, визуально не различимым для человека.
В силу природы глаза, свет, вызывающий ощущение одного и того же цвета (например белого), то есть одну и ту же степень возбуждения трёх зрительных рецепторов, может иметь разный спектральный состав. Человек в большинстве случаев не замечает данного эффекта, как бы «домысливая» цвет. Это происходит потому, что хотя цветовая температура разного освещения может совпадать, спектры отражённого одним и тем же пигментом естественного и искусственного света могут существенно отличаться и вызывать разное цветовое ощущение.
Различия зрения человека и животных. Метамерия в фотографии

Человеческое зрение является трёхстимульным анализатором, то есть спектральные характеристики цвета выражаются всего в трех значениях. Если сравниваемые потоки излучения с разным спектральным составом производят на колбочки одинаковое действие, цвета воспринимаются как одинаковые.
В животном мире существуют четырёх- и даже пятистимульные цветовые анализаторы, поэтому цвета, воспринимаемые человеком одинаковыми, животным могут казаться разными. В частности, хищные птицы видят следы грызунов на тропинках к норам исключительно благодаря ультрафиолетовой люминесценции компонентов их мочи.
Похожая ситуация складывается и с системами регистрации изображений, как цифровыми, так и аналоговыми. Хотя в большинстве своём они являются трёхстимульными (три слоя эмульсии фотоплёнки, три типа ячеек матрицы цифрового фотоаппарата или сканера), их метамерия отлична от метамерии человеческого зрения. Поэтому цвета, воспринимаемые глазом как одинаковые, на фотографии могут получаться разными, и наоборот.

Др.Ховард Гликсмен

Как говорят, «видеть – это верить». Возможность физически видеть или определять какой-либо объект или явление, дает нам гораздо больше уверенности в их существовании. Более того, имея возможность интеллектуально видеть или понимать что-либо, обеспечивает нас высшим уровнем оправдания нашей веры в способность знать правду. Все же, выражение «Видеть – значит верить» само по себе представляет фальшивое понимание того, что означает слово «верить». Если можно физически определять или действительно что-то понимать, то не нужно верить в то, что уже известно посредством ощущений или интеллекта. Верование во что-нибудь требует, чтобы оно либо не ощущалось восприятием, либо не полностью понималось интеллектом. Если кое-что можно увидеть с помощью ощущений или полного понимания интеллектом, тогда единственным ограничивающим фактором для каждого из нас является наше доверие тому, что все, что мы видим и думаем, является правдой.

После всего вышесказанного интересно будет порассуждать на тему достаточно сильной зависимости большинства научных исследований от нашей возможности восприятия посредством зрения. От конструирования отслеживающих устройств, необходимых для наблюдений, до сопоставления данных для анализа и интерпретации: везде способность видеть является очень важной для нас, обеспечивая возможность анализировать окружающий мир.

Но как происходит это таинство зрения? Каким образом мы способны воспринимать свет и любоваться теми, кто нам дорог, восторгаться величием природы и рассматривать гениальные произведения искусства? Эта, а также две последующие статьи будут посвящены исследованию данного вопроса. Как в действительности мы способны улавливать определенный диапазон электромагнитной энергии и превращать его в изображение для дальнейшего рассмотрения?

От фокусирования света на сетчатке до создания нервных импульсов, которые посылаются в мозг, где это все интерпретируется как восприятие зрения; мы рассмотрим необходимые компоненты, которые делают зрение реальностью для человечества. Но я вас предостерегаю - несмотря на обширные знания в области процесса зрения, а так же в области причинной диагностики того, почему оно может быть нефункциональным, все же мы абсолютно не имеем понятия, как мозг выполняет этот трюк.

Да, мы знаем о преломлении света и биомолекулярных реакциях в клетках фоторецепторов сетчатки, все это правда. Мы даже понимаем, как эти нервные импульсы влияют на другую смежную нервную ткань и на выделение различных нейротрансмиттеров. Нам известны разные пути, по которым проходит зрение в пределах мозга, что вызывает смешивания нейровозбуждающих сообщений в визуальной коре головного мозга. Но даже эти знания не могут нам подсказать, как мозг может превратить электрическую информацию в панорамное обозрение Большого каньона, в изображение лица новорожденного ребенка, а также искусства Микеланджело или великого Леонардо. Мы только знаем, что мозг делает эту работу. Это все равно, что спросить о том, что могло бы быть биомолекулярной основой для мысли. В наше время наука не имеет необходимых средств для ответа на данный вопрос.

Глаз

Глаз является сложным органом восприятия, который способен принимать лучи света и фокусировать их на светочувствительных рецепторах, содержащихся в сетчатке. Есть много частей глаза, которые играют важную роль либо непосредственно при выполнении этой функций, либо поддерживая ее (рис.1,2,3).

Рис.1 Вид глаза с отмеченными частями. Смотрите текст для дальнейшего описания характеристик, функций и эффектов их нарушения. Иллюстрации взяты из сайта: www.99main.com/~charlief/Blindness.htm

Рис.2 Вид глаза снаружи с некоторыми из его наиболее важных частей. Иллюстрации получены из сайта: www.99main.com/~charlief/Blindness.htm


Рис.3 Слезы производятся в слезной железе и протекают по поверхности глаза через веки, затем просачиваются в нос сквозь слезно-носовой канал. Поэтому ваш нос затрудняет дыхание, когда вы много плачете.

Веко должно быть открытым и мускулы глаза должны разместить его таким образом, чтобы он располагался по одной линии с лучами света, которые проектируются от объекта рассматривания. Когда лучи света приближаются к глазу, сначала они сталкиваются с роговой оболочкой, которая омывается в необходимом количестве слезами слезной железы. Кривизна и природа роговицы позволяют фотонам света преломляться, как только они начинают концентрироваться в нашей области центрального зрения, которая называется пятном.

Затем свет проходит через внешнюю камеру, которая находится позади роговицы и перед радужной оболочкой и хрусталиком. Внешняя камера наполнена водяной жидкостью, которая называется водянистой влагой, что произошла от структур, расположенных поблизости, и разрешает свету проникать дальше в глаз.

От внешней камеры свет продолжает направляться через регулируемое отверстие в радужке, называемым зрачком, который позволяет глазу контролировать количество входящего света. Затем свет проникает в переднюю (внешнюю) поверхность хрусталика, где потом происходит преломление. Свет продолжает двигаться через хрусталик и выходит через обратную (заднюю) поверхность, снова преломляясь на своем пути к фокусированию на месте центрального зрения – ямка, которая содержит высокую плотность определенных клеток-фоторецепторов. Именно на этом важном этапе глаз должен сделать все необходимое, чтобы позволить всем фотонам света, отраженным от объекта рассматривания, сфокусироваться на предназначенном месте в сетчатке. Он выполняет это, активно изменяя кривизну хрусталика посредством действия цилиарного мускула.

Затем фотоны света направляются через гелеобразное стекловидное тело, которое в значительной степени поддерживает глазное яблоко, и направляется в сетчатку. После этого активизируются клетки фоторецептора в сетчатке, позволяя, в конечном счете, нервным импульсам посылаться вдоль оптического нерва к визуальной коре головного мозга, где они интерпретируются как «зрение».

Представим, что нам понадобилось объяснить происхождение первого, чувствительного к свету «пятна». Эволюция более сложных глаз, с такой точки зрения, является простой… не так ли? Не совсем. Для каждого из различных компонентов необходимо наличие уникальных протеинов, выполняющих уникальнейшие функции, что, в свою очередь, требует наличия уникального гена в ДНК этого существа. Ни гены, ни протеины, которые они кодируют, не функционируют самостоятельно. Существование уникального гена или протеина означает, что вовлекается уникальная система других генов или протеинов со своей функцией. В такой системе отсутствие хотя бы одного системного гена, протеина или молекулы означает, что целая система становиться нефункциональной. Принимая во внимание тот факт, что эволюция одного гена или протеина никогда не наблюдалась и не воспроизводилась в лабораторных условиях, такие, на первый взгляд незначительные различия, внезапно становятся очень важными и огромными.

Фокус статьи

В этой статье мы рассмотрим некоторые из частей глаза и то, как они выполняют три фундаментальные функции: защита и поддержка; передача света; и фокусирование изображения. Мы также увидим, что происходит, когда возникают проблемы и зрение подвергается риску. Это подведет нас размышлениям над вопросом макроэволюции и постепенного развития механизмов.

В следующей статье мы рассмотрим клетки фоторецепторов и взаимосвязь их размещения в сетчатке с их функциями, а также поговорим о биомолекулярной основе для нервного воспроизведения импульсов вдоль оптического нерва. В мы рассмотрим, как визуальное сообщение отправляется в мозг посредством различных путей, и получим общее представление о сложной природе того, как визуальная кора головного мозга «видит».

Служить и защищать

Существует много компонентов, которые несут ответственность не только за защиту и оберегание глаза, но и обеспечивают его питательными веществами и физической поддержкой. Без наличия какого-либо из этих важных факторов, мы не смогли бы видеть так хорошо, как это происходит сейчас. Вот список одних из наиболее важных частей с кратким изложением того, что они делают для глаза.

Глазная впадина: состоит из пяти разных костей, которые срастаются: лобная кость, решетчатая кость, скуловая кость, челюстная кость, слезная кость, что обеспечивает костную защиту примерно 2/3 глазного яблока. Эти кости также обеспечивают надежную основу для происхождения сухожилий мышц, которые несут ответственность за движение глаза.

Веки: верхние и нижние , каждой из которых нужен нейромышечный контроль и рефлекторная деятельность для защиты глаза; защищают глаз от воздействия света, пыли, грязи, бактерий, т.д. Мигание или рефлекс роговицы обеспечивает быстрое закрытие глаза, как только роговица раздражается при попадании на нее инородного тела, к примеру, пыли или грязи. Ослепительный рефлекс обеспечивает быстрое закрытие век, когда глаз подвергается воздействию очень яркого света, таким образом, блокируя 99% света, проникающего в глаз. Рефлекс угрозы обеспечивает мгновенное закрытие век от разных движений, которые направляются к глазу. Стимулы для инициирования этих двух последних рефлексов происходят из сетчатки. Вдобавок к функции защиты, мигая, веки распространяют слезную оболочку вдоль передней поверхности глаза, что необходимо для роговицы.

Слезная оболочка и ее образование: включает три слоя, состоящих из масла, воды и слизистой жидкости; вырабатывается сальной железой век, слезной железой, клетками конъюнктивы. Слезная оболочка удерживает влагу, сохраняет гладкую поверхность на передней части глаза, облегчая проведение света, оберегает глаз от заражения и повреждения.

Склера: известна также как белок глаза. Это внешний защитный слой, покрытый конъюнктивой, которая вырабатывает и выделяет жидкость, увлажняющую и смазывающую глаз.

Сосудистая оболочка глаза: этот слой расположен между склерой и сетчаткой. Он обеспечивает циркуляцию крови к задней части глаза и к пигментированному эпителию сетчатки (ПЭС), расположенному прямо за ней и поглощающему свет. Таким образом, когда свет проникает сквозь сетчатку, слой, что расположен с задней стороны, поглощает его и предотвращает обратное отражение, тем самым, предотвращая искажение зрения.

Роговая оболочка глаза: эта специализированная соединяющая ткань находится в той же плоскости, что и склера, к которой она примыкает на корнеосклеральной точке соединения. Тем не менее, она находится там, где свет проникает в глаз. В роговице отсутствуют кровяные сосуды, то есть, она бессосудистая. Это одна из наиболее важных характеристик, которая разрешает ей оставаться четкой, чтобы пропускать свет в оставшуюся часть глаза. Роговица получает воду, кислород и питательные вещества от двух источников: с помощью слез, которые, выделяясь слезной железой, равномерно распределяются по роговице под действием век, и от водянистой влаги, присутствующей во внешней камере (смотрите ниже). Пока роговица защищает глаз, веки защищают ее. Нейромускулатурная система в теле обеспечивает роговицу наибольшей густотой чувствительных нервных волокон, чтобы они могли защищать ее от малейшего раздражения, которое может закончиться заражением. Один из последних рефлексов в предсмертном состоянии – это рефлекс роговицы, который проверяется прикосновением клочка ткани до роговицы глаза человека, находящегося без сознания. Позитивный рефлекс вызовет внезапную попытку закрыть веки, что можно увидеть с помощью движения мышц вокруг глаза.

Водянистая влага: это водянистая жидкость, которая производится цилиарным телом и выделяется во внешнюю камеру, расположенную прямо за роговицей и перед радужкой. Эта жидкость питает не только роговицу, но и хрусталик, и играет роль в образовании формы передней части глаза, занимая место в этой области. Водянистая жидкость вытекает во внешнюю камеру через каналы Шлемма.

Стекловидное тело: это толстое, прозрачное и гелеобразное вещество, наполняющее яблоко глаза и придающее ему форму и вид. Оно имеет способность сжиматься, а затем возвращаться к своей обычной форме, тем самым, позволяя глазному яблоку противостоять травмам без серьезных повреждений.

Нарушение защиты

Примеры того, что может случиться в реальной жизни с этими разнообразными компонентами, когда они не функционируют, и как это может повлиять на зрение, дает нам понимание, насколько важным является каждый из этих компонентов для сохранения надлежащего зрения.

  • Травма глазницы может причинить серьезные повреждения глазному яблоку, что проявляется в его внутреннем повреждении, а также ущемлении нервов и мышц, которые управляют глазом, и это проявляется в двойном зрении и проблемах восприятия глубины.
  • Нарушение функционирования век может происходить от воспаления или повреждения 7-го черепно-мозгового нерва (лицевого нерва), когда возможность правильно закрывать глаз подвергается риску. Это может проявиться в повреждении роговицы, поскольку веки больше не смогут ее защищать от окружающей среды и травм, мешая тем временем слезной оболочке проходить через ее поверхность. Зачастую, пациент будет носить глазную повязку и наносить мазь на нижний мешочек, чтобы поддерживать влагу в роговице и предотвратить повреждение.
  • Синдром Шегрена и синдром «сухого глаза» проявляются в увеличении риска образования слез, который является не только раздражающим состоянием, но проявляется в нечетком зрении.
  • Повреждение роговицы, такое как заражение или травма, может проявляться в последующем повреждении структур, находящихся за ней, редко в эндофтальмите, а так же в сильной инфекции внутренней части глаза, что часто приводит к его хирургическому удалению.
  • Полный разрыв через слои роговицы может проявляться в выделении водянистой влаги глаза из внешней камеры, вследствие чего передняя часть глаза становится гладкой, и тогда внешняя камера существует только потенциально, приводя к потере зрения.
  • Стекловидное тело глаза часто изнашивается, начинает втягиваться и может стянуть сетчатку с ее места крепления, что приводит к ее отсоединению.

Итак, подведем итоги. Из вышеописанного становиться видно, что каждая часть глаза является абсолютно необходимой для поддержки и функционирования зрения. Сетчатка играет важную роль, имея фоточувствительные клетки, которые могут посылать сообщения в мозг для интерпретации. Но каждый из упомянутых компонентов играет важную роль в поддержке, без которой наше зрение пострадало бы либо вообще не смогло бы существовать.

Макроэволюция и ее последовательный механизм обязан еще более детально объяснять, как человеческое зрение, согласно ее утверждению, развилось посредством случайных мутаций от светочувствительных пятен у беспозвоночных, принимая во внимание сложную структуру, физиологическую природу и взаимозависимость всех вышеупомянутых компонентов.

Разрешите свету проходить

Для того чтобы глаз функционировал должным образом, многие из его частей должны быть способными разрешать свету проходить через них, при этом, не разрушая и не искажая его. Другими словами, они должны быть светопроницаемыми. Посмотрите на остальные части тела, и вы вряд ли найдете другие ткани, обладающие такой жизненной особенностью, которая разрешает проникновения света. Макроэволюция должна быть способной объяснить не только генетические механизмы происхождения макромолекул, составляющих части глаз, но и объяснить также, каким образом получилось так, что они обладают уникальной особенностью быть светопроницаемыми и размещаться в одном органе тела, что необходимо для правильного функционирования.

Роговица защищает глаз от окружающей среды, но также она разрешает свету проникать в глаз на его пути к сетчатке. Прозрачность роговицы зависит от отсутствия в ней кровяных сосудов. Но клетки роговицы сами требуют воды, кислорода и питательных веществ для выживания, как любая другая часть тела. Они получает эти жизненно необходимые вещества от слез, которые покрывают переднюю часть роговицы и от водянистой влаги, которая омывает заднюю часть. Ясно, что выдвигать предположения насчет развития светопроницаемой роговицы, не принимая во внимание то, как она сама могла работать и оставаться светопроницаемой в течение всего процесса, - это, на самом деле, сильное упрощение весьма сложного явления, чем это предполагалось ранее. Повреждение роговицы заражением или травмой может привести к рубцеванию, вследствие чего может развиться слепота, поскольку свет более уже не будет проникать через нее в сетчатку. Самой распространенной причиной слепоты в мире является трахома - инфекция, которая повреждает роговицу.

Внешняя камера , которая с внешней стороны связана с роговицей, наполняется водянистой влагой , производимой из ресничного тела. Эта влага является чистой водяной жидкостью, которая не только разрешает свету проходить невредимым, но и поддерживает роговицу и хрусталик. Существует много других жидкостей, которые вырабатываются в теле, как, например, кровь, моча, синовиальная жидкость, слюна и т.д. Большинство из них не способствуют передаче света в том объеме, который необходим для зрения. Макроэволюция должна также объяснить развитие ресничного тела и его способность вырабатывать эту водяную влагу, которая наполняет, формирует и поддерживает внешнюю камеру. Также должна быть объяснена, с точки зрения макроэволюции, необходимость водяной влаги для зрения, в том смысле, что в реальности она обслуживает еще и другие ткани (роговицу и хрусталик), которые очень важны для продолжения функционирования. Какие из этих компонентов появились первыми, и как они функционировали друг без друга?

Радужка (радужная оболочка) – это протяженность пигментированной сосудистой оболочки глаза, которая придает ему цвет. Радужка контролирует количество света, поступающего далее к сетчатке. Она состоит из двух разных видов мышц, обе из которых контролируются нервными клетками, регулируя размер открытия, которое называются зрачком. Сфинктер зрачка (круговая суживающая мышца), который размещается вдоль края радужки, сокращается, чтобы закрывать отверстие в зрачке. Расширяющая мышца идет радиально через радужку, как спицы колеса, и когда она сокращается, то зрачок открывается. Радужная оболочка очень важна для контролирования количества света, которое проникает в глаз в определенный период. Тот человек, который вследствие болезни глаз, называемой экземой, испытал на себе мучение из-за расширения зрачков, и ему поэтому приходилось выходить на свет, может полностью оценить данный факт.

Макроэволюция должна ответить, как развилась каждая мышца и в каком порядке, обеспечивая в то же время функционирование зрачка. Какая мышца возникла первой, и какие генетические изменения несли за это ответственность? Как функционировала радужка для промежуточного глаза, когда отсутствовала одна из мышц? Как и когда возник контролирующий нервный рефлекс?

Хрусталик расположен непосредственно за радужкой и помещен в специальный мешочек. Он удерживается на месте с помощью поддерживающих связок , присоединенных к цилиарному телу и называемых поясками. Хрусталик состоит из протеинов, которые позволяют ему оставаться прозрачным и светопроницаемым для передачи света в сетчатку. Как и роговица, хрусталик не содержит сосудов и, таким образом, зависит от водянистой влаги для получения воды, кислорода, питательных веществ. Образование катаракты может произойти вследствие травмы или изнашивания хрусталика, причиняя обесцвечивание и жесткость, что является помехой для нормального зрения. Как и роговица, хрусталик состоит из сложной сети тканей, построенных из разных макромолекул, которые зависят от генетического кода в ДНК. Макроэволюция должна объяснить точную природу генетических мутаций или клеточных трансформаций, которые должны были произойти в более примитивных светочувствительных органах, чтобы развить такую сложную ткань со своими уникальными способностями проводить свет.

Стекловидное тело , как упоминалось в предыдущей части, является светлой, гелеобразной субстанцией, которая заполняет большую часть яблока глаза и придает ему форму и вид. Еще раз подчеркнем, что тело может производить материал с нужными качествами и размещать его в органе, которому он нужен. Те же вопросы к макроэволюции, которые касались макромолекулярного развития роговицы и хрусталика, как упоминалось выше, относятся и к стекловидному телу, причем необходимо помнить, что все три ткани, имея различную физическую природу, находятся в правильных положениях, что позволяет человеку видеть.

Фокусирование, фокусирование, фокусирование

Я хотел бы, чтобы вы сейчас обернулись, выглянули в окно или через дверь комнаты, в которой вы находитесь, и посмотрели на какой-нибудь максимально удаленный объект. Как вы полагаете, сколько из всего, что видят ваши глаза, вы по-настоящему фокусируете? Человеческий глаз способен к высокой визуальной резкости. Это выражено в угловой разрешающей способности, т.е. в том, сколько градусов из 360 в визуальном поле может ясно сфокусировать глаз? Человеческий глаз может разрешать одну дуговую минуту, которая представляет 1/60 градуса. Полная луна занимает 30 дуговых минут в небе. Достаточно удивительно, не так ли?

Некоторые хищные птицы могут обеспечивать разрешение до 20 дуговых секунд, что предоставляет им большую визуальную резкость, чем наша.

А сейчас обернитесь снова и посмотрите на этот отдаленный объект. Но в этот раз заметьте, что, хотя с первого взгляда вам кажется, что вы фокусируетесь на большой части поля, когда в действительности вы концентрируетесь на том, куда вы смотрите. Тогда вы поймете, что это представляет всего лишь маленькую часть целого изображения. То, что вы сейчас испытываете – это центральное зрение, которое зависит от ямки и пятна, окружающего его в сетчатке. Этот участок состоит в основном из фоторецепторов-колбочек, которые лучше всего работают при ярком свете и позволяют видеть четкие изображения в цвете. Почему и как это происходит, мы будем рассматривать в следующей статье. По существу, люди, страдающие дистрофией желтого пятна, хорошо знают о том, что может случиться, когда их центральное зрение ухудшается.

Сейчас, обернитесь снова и посмотрите на объект, который находится вдалеке, но в этот раз обратите внимание, насколько неопределенным и недостаточно цветным является все остальное, что находится за пределами центрального зрения. Это ваше периферийное зрение, которое в основном зависит от фоторецепторов-палочек, которые выстилают оставшуюся часть сетчатки и обеспечивают нас ночным зрением. Это также будет обсуждаться в следующей статье. Мы рассмотрим, как сетчатка способна посылать в мозг нервные импульсы. Но для того, чтобы вы могли оценить необходимость в возможности глаза фокусироваться, вам сначала следует понять, как сетчатка работает. В конце концов – это то, на чем фокусируются световые лучи.

Кроме случаев перпендикулярного прохождения, лучи света изгибаются или преломляются, когда они проходят сквозь вещества разной плотности такие, как воздух или вода. Поэтому свет, помимо света, который проходит непосредственно через центр роговицы и хрусталика, будет преломляться в направлении главного фокуса на некотором расстоянии за ними (фокусное расстояние). Это расстояние будет зависеть от совместной силы роговой оболочки и хрусталика, направленной на преломление света и непосредственно связанной с их кривизной.

Для понимания того, как и почему глаз должен фокусировать свет, чтобы мы четко видели, важно знать, что все лучи света, проникающие в глаз от источника на расстоянии более 20 футов, перемещаются параллельно друг к другу. Чтобы глаз мог иметь центральное зрение, роговая оболочка и линза должны быть способными преломлять эти лучи таким образом, чтобы все они сводились на ямке и пятне. (см. рис.4)

Рис. 4 Данный рисунок демонстрирует, как глаз фокусируется на объектах, расположенных на расстоянии более 20 футов. Заметьте, насколько параллельны лучи света друг к другу при их приближении к глазу. Роговица и хрусталик работают вместе, чтобы преломлять свет к фокальной точке на сетчатке, которая совпадает с размещением ямки и пятна, окружающих ее. (см. рис.1) Иллюстрация взята на сайте: www.health.indiamart.com/eye-care.

Преломляющая сила хрусталика измеряется в диоптриях. Эта сила выражается как обратная величина от фокусного расстояния. Например, если фокусная длина линзы составляет 1 метр, тогда преломляющая мощность обозначается как 1/1 = 1 диоптрий. Таким образом, если сила роговой оболочки и хрусталика для сведения в оду точку лучей света составляла бы 1 диоптр, то размер глаза от передней части к задней должен был бы составлять 1 метр для того, чтобы свет мог фокусироваться на сетчатке.

На самом деле, преломляющая сила роговой оболочки – примерно 43 диоптрия, а преломляющая мощность хрусталика в состоянии спокойствия при рассматривании объекта, находящегося на расстоянии более 20 футов, составляет примерно 15 диоптрий. При подсчете объединенной преломляющей мощности роговой оболочки и хрусталика можно увидеть, что она составляет примерно 58 диоптрий. Это означает, что расстояние от роговицы к сетчатке составило примерно 1/58 = 0.017 метров = 17 мм для правильного фокусирования света на ямке. Что же нам известно? Это как раз столько, сколько оно составляет у большинства людей. Конечно же, это аппроксимация средней величины и определенный человек может иметь роговицу или хрусталик с другой кривизной, которая проявляется в разнообразных диоптрических возможностях и длине глазного яблока.

Главное здесь, что совместная преломляющая мощность роговицы и хрусталика отлично соотносится с размером глазного яблока. Макроэволюция должна объяснить генетические мутации, которые были ответственны не только за то, что примитивная светочувствительная ткань была помещена в хорошо защищенном яблоке, заполненном гелеобразным веществом, но и за то, что разные ткани и жидкость позволяют свету передаваться и фокусироваться с силой, которая соответствует размерам этого яблока.

Люди, испытывающие близорукость (миопию), имеют затруднения четкостью зрения, поскольку их глазное яблоко слишком длинное и роговая оболочка с линзой фокусируют свет от объекта перед сетчаткой. Это позволяет свету продолжать проходить через фокусную точку и распределятся на сетчатке, что приводит к расплывчатому зрению. Эту проблему можно разрешить с помощью очков или линз.

А сейчас давайте рассмотрим, что происходит, когда глаз пробует фокусироваться на чем-то, расположенном близко. По определению свет, который проникает в глаз от объекта, расположенного на расстоянии менее 20 футов, не проникает параллельно, а является расходящимся. (см. рис.5). Таким образом, чтобы быть способным фокусироваться на объекте, который находится близко от наших глаз, роговица и хрусталик каким-то образом должны быть способными преломлять свет сильнее, чем они могут сделать это в состоянии покоя.

Рис. 5 Рисунок демонстрирует нам, как глаз фокусируется на объектах, расположенных на расстоянии менее 20 футов. Заметьте, что лучи света, проникающие в глаз, не параллельные, а расходящиеся. Поскольку преломляющая мощность роговицы фиксирована, то хрусталик должен регулировать все необходимое, чтобы фокусироваться на близких объектах. Смотрите текст, чтобы понять, как она это делает. Иллюстрация взята на сайте: www.health.indiamart.com/eye-care.

Отойдите и посмотрите снова вдаль, а затем сфокусируйте свой взгляд на задней стороне своей руки. Вы почувствуете небольшое дергание в глазах, поскольку вы фокусируете взгляд на близком расстоянии. Этот процесс называется приспособлением. Что происходит на самом деле, так это то, что ресничная мышца под нервным контролем может сокращаться, что позволяет хрусталику больше выпучиваться. Это движение увеличивает преломляющую мощность линзы от 15 до 30 диоптрий. Такое действие заставляет лучи света сводиться больше и разрешает глазу фокусировать свет от близко расположенного объекта на ямку и пятно. Опыт нам показал, что существует ограничение насчет того, как близко глаз может фокусировать. Это явление называется ближайшей точкой ясного зрения.

По мере того, как люди стареют, около 40 лет у них развивается состояние, которое называется пресбиопией (старческая дальнозоркость), когда у них появляются затруднения с фокусировкой на близко расположенных объектах, поскольку хрусталик становится жестким и теряет свою эластичность. Поэтому часто можно увидеть пожилых людей, которые держат предметы на расстоянии от глаз, чтобы сфокусироваться на них. Вы также можете заметить, что они носят бифокальные очки или очки для чтения, с помощью которых они могут спокойно читать.

Макроэволюция должна быть в состоянии объяснить независимое развитие каждого компонента, необходимого для приспособляемости. Хрусталик должен быть достаточно эластичным, что позволяет ему изменять форму. Он должна находиться в висящем состоянии, чтобы двигаться. Цилиарная мышца и ее нервный контроль должны также произойти. Целый процесс нейромышечного функционирования и действия рефлекса должны объясняться пошаговым процессом на бимолекулярном и электрофизиологическом уровнях. К сожалению, ничего из перечисленного выше не было объяснено, прозвучали лишь расплывчатые, без особой конкретизации, оптимистические заявления на тему простоты этих заданий. Возможно, этого вполне может быть достаточно для тех, кто ранее был предан понятию макроэволюции, но совершенно не соответствует требованиям, предъявляемым даже к попыткам любого подлинно научного объяснения.

В завершение хочется напомнить, что для того, чтобы иметь такую сложную последовательность в глазе для правильного фокусирования, нужно также быть способным поворачивать глаза к интересующему нас предмету. Существует шесть внешних мышц глаза, функционирующих согласованно. Совместная работа глаз обеспечивает нам правильное восприятие глубины и зрение. Как только какая-нибудь мышца сокращается, противоположная ей расслабляется для обеспечения ровного движения глаз, когда они сканируют окружающую среду. Это происходит под контролем нервов и требует объяснения от макроэволюции.

(См. и ).

Какая мышца возникла первой, и какие генетические мутации несли за это ответственность? Как функционировал глаз без наличия других мышц? Когда и как развился нервный контроль мышц? Когда и каким образом произошла координация?

Изменения в фокусировании?

Из информации этой статьи все еще могут подниматься вопросы к макроэволюции, на которые не было ответа. Мы даже не затрагивали проблему биомолекулярной основы для функционирования фоторецептора, образования нервного импульса, оптического пути к мозгу, результатом чего является нервная возбуждающая система, интерпретируемая мозгом как «зрением». Множество экстраординарных сложных частей необходимы человеческому глазу для существования, длительности действия и функционирования. Наука сейчас обладает новой информацией об образовании макромолекул и тканей, лежащих в основе электрофизиологических механизмов функционирования фоторецепторов, и о взаимозависимых анатомических компонентах глаза, необходимых для надлежащего функционирования и выживания. Макроэволюция обязательно должна исследовать все эти вопросы, чтобы обеспечить объяснение происхождения такого сложного органа.

Несмотря на то, что в то время Дарвин не знал этого, интуиция на самом деле его не подвела, когда он высказал свое мнение в книге «О происхождении видов»: «Предполагать, что глаз […] мог сформироваться путем естественного отбора, кажется, я свободно признаю, что это является в высшей степени абсурдом».

Сегодня для принятия теории происхождения исследователи, обладающие современным пониманием того, каким образом на самом деле работает жизнь, потребовали бы намного больше доказательств, чем простое существование разных типов глаз в различных организмах. Каждый аспект функционирования глаза и зрения - генетический код, отвечающий за макромолекулярные структуры, содержащиеся в пределах каждой необходимой части, физиологическая взаимозависимость каждого компонента, электрофизиология «зрения», механизмы мозга, которые позволяют получать нервные импульсы и преобразовывать их в то, что мы называем «зрением» и т.д. - все это должно быть представлено в виде пошагового процесса для того, чтобы макроэволюцию можно было считать приемлемым механизмом происхождения.

Принимая во внимание все требования к макроэволюции, рассматривая логическое и тщательное объяснение развития человеческого глаза, одним из рациональных подходов к объяснению может быть сравнения функционирования глаза с фактическим данными, которые содержатся в человеческих изобретениях. Обычно говорят, что глаз похож на камеру, но на самом деле, это несколько не точное предположение. Поскольку в человеческих отношениях является, так сказать, универсальным понимание, что если «у» похож на «х», тогда согласно определению «х» хронологически предшествовал «у». Таким образом, при сравнивании глаза с камерой наиболее правдивым утверждением будет высказывание, что «камера похожа на глаз». Для любого здравомыслящего читателя очевидно, что камера не произошла сама собою, а образовалась человеческим интеллектом, то есть, она была произведением разумного дизайна.

Таким образом, является ли прыжком веры мнение, что, поскольку на основе опыта нам известно, что камера была создана интеллектуально и очень похожа на человеческий глаз, то глаз также был создан разумно? Что является более рациональным для разума: предложения макроэволюции или же разумный замысел?

В следующей статье мы тщательно исследуем мир сетчатки с ее клетками-фоторецепторами, а также биомолекулярную и электрофизиологическую основу для улавливания фотона, и как результат, передачу импульсов в мозг. Определенно, это добавит еще один слой сложности, требующий макроэволюционного объяснения, которое пока, на мой взгляд, еще не было представлено должным образом.

Доктор Ховард Гликсмен окончил университет в Торонто в 1978 году. Он практиковал медицину почти 25 лет в г. Оквилле, Онтарио и Спринг Хилл, Флорида. Недавно д-р Гликсмен оставил свою частную практику и начал практиковать паллиативную медицину для хосписа в своей общине. У него особый интерес к вопросам влияния на характер нашей культуры достижений современной науки, также в круг его интересов входят исследования на тему, что означает быть человеком.

С первого дня появления ребёнка на свет зрение помогает ему познавать окружающий мир. С помощью глаз человек видит чудесный мир красок и солнца, зримо воспринимает колоссальный поток информации. Глаза дают человеку возможность читать и писать, знакомиться с произведениями искусства и литературы. Любая профессиональная работа требует от нас хорошего, полноценного зрения.

На человека постоянно действует непрерывный поток внешних раздражителей и разнообразная информация о процессах внутри организма. Понять эту информацию и правильно отреагировать на большое число происходящих вокруг событий позволяют человеку органы чувств. Среди раздражителей внешней среды для человека особенно большое значение имеют зрительные. Большая часть наших сведений о внешнем мире связана со зрением. Зрительный анализатор (зрительная сенсорная система) является важнейшим из всех анализаторов, т.к. он даёт 90% информации, которая идёт к мозгу от всех рецепторов. При помощи глаз мы не только воспринимаем свет и узнаём цвет объектов окружающего мира, но и получаем представление о форме предметов, их удалённости, размерах, высоте, ширине, глубине, иначе говоря, об их пространственном расположении. И всё это благодаря тонкому и сложному строению глаз и их связям с корой головного мозга.

Строение глаза. Вспомогательный аппарат глаза

Глаз - находится в орбитальной впадине черепа - в глазнице, сзади и с боков окружён мышцами, которые его двигают. Он состоит из глазного яблока со зрительным нервом и вспомогательных аппаратов.

Глаз - самый подвижный из всех органов человеческого организма. Он совершает постоянные движения, даже в состоянии кажущегося покоя. Мелкие движения глаз (микродвижения) играют значительную роль в зрительном восприятии. Без них невозможно было бы различать предметы. Кроме того, глаза совершают заметные движения (макродвижения) - повороты, перевод взора с одного предмета на другой, слежение за движущимися предметами. Различные движения глаза, повороты в стороны, вверх, вниз обеспечивают глазодвигательных мышцы, расположенные в глазнице. Всего их шесть. Четыре прямые мышцы крепятся к передней части склеры - и каждая из них поворачивает глаз в свою сторону. А две косые мышцы, верхняя и нижняя, прикрепляются к задней части склеры. Согласованное действие глазодвигательных мышц обеспечивает одновременный поворот глаз в ту или иную сторону.

Орган зрения нуждается в защите от повреждений для нормального развития и работы. Защитными приспособлениями глаз являются брови, веки и слёзная жидкость.



Бровь - парная дугообразная складка толстой кожи, покрытая волосами, в которую вплетаются лежащие под кожей мышцы. Брови отводят пот со лба и служат для защиты от очень яркого света. Веки закрываются рефлекторно. При этом они изолируют сетчатку от действия света, а роговицу и склеру - от каких-либо вредных воздействий. При моргании происходит равномерное распределение слёзной жидкости по всей поверхности глаза, благодаря чему глаз предохраняется от высыхания. Верхнее веко больше, чем нижнее, и его поднимает мышца. Веки закрываются за счёт сокращения круговой мышцы глаза, имеющей циркулярную ориентацию мышечных волокон. По свободному краю век располагаются ресницы , которые защищают глаза от пыли и слишком яркого света.

Слёзный аппарат . Слёзная жидкость вырабатывается специальными железами. Она содержит 97,8% воды, 1,4% органических веществ и 0,8% солей. Слёзы увлажняют роговицу и способствуют сохранению её прозрачности. Кроме того, они смывают с поверхности глаза, а иногда и век попавшие туда инородные тела, соринки, пыль и т.п. В слёзной жидкости содержатся вещества, убивающие микробов через слёзные канальцы, отверстия которых расположены во внутренних уголках глаз, попадает в так называемый слёзный мешок, а уже отсюда - в носовую полость.

Глазное яблоко имеет не совсем правильную шаровидную форму. Диаметр глазного яблока составляет примерно 2,5 см. В движении глазного яблока принимает участие шесть мышц. Из них четыре прямые и две косые. Мышцы лежат внутри глазницы, начинаются от её костных стенок и прикрепляются к белочной оболочке глазного яблока позади роговицы. Стенки глазного яблока образованы тремя оболочками.

Оболочки глаза

Снаружи оно покрыто белочной оболочкой (склерой ). Она самая толстая, прочная и обеспечивает глазному яблоку определённую форму. Склера составляет приблизительно 5/6 часть наружной оболочки, она непрозрачна, белого цвета и частью видна в пределах глазной щели. Белковая оболочка - очень прочная соединительнотканная оболочка, которая покрывает весь глаз и защищает его от механических и химических повреждений.



Передняя часть этой оболочки прозрачная. Она называется - роговицей . Роговица имеет безупречную чистоту и прозрачность благодаря тому, что постоянно протирается мигающим веком и промывается слезой. Роговица - единственное место в белковой оболочке, через которое внутрь глазного яблока проникают лучи света. Склера и роговица - довольно плотные образования, обеспечивающие глазу сохранение формы и предохранение его внутренней части от различных внешних вредных воздействий. За роговицей находится кристально прозрачная жидкость.

Изнутри к склере прилегает вторая оболочка глаза - сосудистая . Она обильно снабжена кровеносными сосудами (выполняет питательную функцию) и пигментом, содержащим красящее вещество. Передняя часть сосудистой оболочки называется радужной . Находящийся в ней пигмент обусловливает цвет глаз. Окраска радужки зависит от количества пигмента меланина. Когда его много - глаза тёмно- или светло-карие, а когда мало - серые, зеленоватые или голубые. Людей с отсутствием меланина называют альбиносами. В центре радужки есть небольшое отверстие - зрачок , который, суживаясь или расширяясь, пропускает, то больше, то меньше света. Радужка отделяется от собственно сосудистой оболочки ресничным телом. В толще его находится ресничная мышца, на тонких упругих нитях которой подвешен - хрусталик - прозрачное тело, похожее на лупу, крошечная двояковыпуклая линза диаметром 10 мм. Он преломляет лучи света и собирает их в фокусе на сетчатке. При сокращении или расслаблении ресничной мышцы хрусталик меняет свою форму - кривизну поверхностей. Это свойство хрусталика позволяет чётко видеть предметы как на близком, так и на далёком расстоянии.

Третья, внутренняя оболочка глаза - сетчатая . Сетчатка имеет сложное строение. Она состоит из светочувствительных клеток - фоторецепторов и воспринимает свет, поступающий в глаз. Она расположена только на задней стенке глаза. В сетчатке различают десять слоёв клеток. Особенно важное значение имеют клетки, получившие название колбочек и палочек. В сетчатой оболочке палочки и колбочки расположены неравномерно. Палочки (около 130 млн.) отвечают за восприятие света, а колбочки (около 7 млн.) - за цветовое восприятие.



Палочки и колбочки имеют в зрительном акте различное назначение. Первые работают на минимальном количестве света и составляют сумеречный аппарат зрения; колбочки же действуют при больших количествах света и служат для дневной деятельности аппарата зрения. Различная функция палочек и колбочек обеспечивает высокую чувствительность глаза к очень высоким и низким освещенностям. Способность глаза приспосабливаться к разной яркости освещения называется адаптацией .

Глаз человека способен различать бесконечное разнообразие цветовых оттенков. Восприятие многообразия цветов обеспечивают колбочки сетчатки. Колбочки чувствительны к цветам только при ярком свете. При слабом освещении восприятие цветов резко ухудшается, и все предметы в сумерках кажутся серыми. Колбочки и палочки действуют вместе. От них отходят нервные волокна, образующие затем зрительный нерв, выходящий из глазного яблока и направляющийся в головной мозг. Зрительный нерв состоит примерно из 1 млн. волокон. В центральной части зрительного нерва проходят сосуды. В месте выхода зрительного нерва палочки и колбочки отсутствуют, вследствие чего свет этим участком сетчатки не воспринимается.

Зрительный нерв (проводящие пути )

Сетчатка глаза является первичным нервным центром обработки зрительной информации. Место выхода из сетчатки зрительного нерва называется диском зрительного нерва (слепое пятно ). В центре диска в сетчатку входит центральная артерия сетчатки. Зрительные нервы проходят в полость черепа через каналы зрительных нервов.



На нижней поверхности головного мозга образуется перекрест зрительных нервов - хиазма , но перекрещиваются только волокна, идущие от медиальных частей сетчаток. Эти перекрещивающиеся зрительные пути называются зрительными трактами . Большинство волокон зрительного тракта устремляются в латеральное коленчатое тело , головного мозга. Латеральное коленчатое тело имеет слоистое строение и названо так потому, что его слои изгибаются наподобие колена. Нейроны этой структуры направляют свои аксоны через внутреннюю капсулу, затем в составе зрительной радиации к клеткам затылочной доли коры больших полушарий возле шпорной борозды. По этому пути идет информация только о зрительных стимулах.



Функции зрения

Системы Придатки и части глаза Функции
Вспомогательные Брови Отводят пот со лба
Веки Защищают глаза от световых лучей, пыли, пересыхания
Слёзный аппарат Слёзы смачивают, очищают, дезинфицируют
Оболочки глазного яблока Белочная
  • Защита от механического и химического воздействия.
  • Вместилище всех частей глазного яблока.
Сосудистая Питание глаза
Сетчатка Восприятие света, светорецепторы
Оптическая Роговица Преломляет лучи света
Водянистая влага Пропускает лучи света
Радужная оболочка (радужка) Содержит пигмент, придающий цвет глазу, регулирует отверстие зрачка
Зрачок Регулирует количество света, расширяясь и суживаясь
Хрусталик Преломляет и фокусирует лучи света, обладает аккомодацией
Стекловидное тело Заполняет глазное яблоко. пропускает лучи света
Световоспринимающая (зрительный рецептор) Фоторецепторы (нейроны)
  • Палочки воспринимают форму (зрение при слабом освещении);
  • колбочки - цвет (цветовое зрение).
Зрительный нерв Воспринимает возбуждение рецепторных клеток и передаёт в зрительную зону коры головного мозга, где происходит анализ возбуждения и формирование зрительных образов

Глаз как оптический прибор

Параллельным потоком световое излучение попадает на радужная оболочку (выполняет роль диафрагмы), с отверстием, через которое свет поступает в глаз; эластичный хрусталик - это своеобразная двояковыпуклая линза, фокусирующая изображение; эластичная полость (стекловидное тело), придающая глазу сферическую форму и удерживающая на своих местах его элементы. Хрусталик и стекловидное тело обладают свойствами передавать структуру видимого изображения с наименьшими искажениями. Регулирующие органы управляют непроизвольными движениями глаза и приспосабливают его функциональные элементы к конкретным условиям восприятия. Они изменяют пропускную способность диафрагмы, фокусное расстояние линзы, давление внутри эластичной полости и другие характеристики. Управляют этими процессами центры в среднем мозгу с помощью множества чувствительных и исполнительных элементов, распределенных по всему глазному яблоку. Измерение световых сигналов происходит во внутреннем слое сетчатки, состоящем из множества фоторецепторов, способные преобразовывать световое излучение в нервные импульсы. Фоторецепторы в сетчатке распределены неравномерно, образуя три области восприятия.

Первая - область обзора - находится в центральной части сетчатки. Плотность фоторецепторов в ней наивысшая, поэтому она обеспечивает четкое цветное изображение предмета. Все фоторецепторы в этой области по своему устройству в принципе одинаковы, отличаются они только избирательной чувствительностью к длинам волн светового излучения. Одни из них наиболее чувствительны к излучениям (средняя части), вторые - в верхней части, третьи - в нижней. У человека есть три вида фоторецепторов, реагирующих на синие, зеленые и красные цвета. Здесь же, в сетчатке, выходные сигналы этих фоторецепторов совместно обрабатываются в результате чего усиливается контраст изображения, выделяются контуры объектов и определяется их цвет.

Объемное изображение воспроизводится в коре головного мозга, куда направляются видеосигналы от правого и левого глаза. У человека область обзора охватывает всего в 5°, и только в ее пределах он может осуществлять обзорно-сравнительные измерения (ориентироваться в пространстве, распознавать объекты, следить за ними, определять их относительное расположение и направление движения). Вторая область восприятия выполняет функцию захвата целей. Она располагается вокруг области обзора и не дает четкого изображения видимой картины. Ее задача - быстрое обнаружение контрастных целей и изменений, происходящих во внешней обстановке. Поэтому в этой области сетчатки плотность обычных фоторецепторов невысока (почти в 100 раз меньше, чем в области обзора), зато имеется множество (в 150 раз больше) других, адаптивных фоторецепторов, реагирующих только на изменение сигнала. Совместная обработка сигналов тех и других фоторецепторов обеспечивает высокое быстродействие зрительного восприятия в этой области. Кроме того, человек способен быстро улавливать малейшие движения боковым зрением. Функциями захвата управляют отделы среднего мозга. Здесь интересующий объект не рассматривается и не распознается, а определяется его относительное расположение, скорость и направление движения и даётся команда глазодвигательным мышцам - быстро повернуть оптические оси глаз так, чтобы объект попал в зону обзора для детального рассмотрения.

Третью область образуют краевые участки сетчатки , на которые не попадает изображение объекта. В ней плотность фоторецепторов самая маленькая - в 4000 раз меньше, чем в области обзора. Ее задача - измерение усредненной яркости света, которая используется зрением как точка отсчета для определения интенсивности попадающих в глаз потоков света. Именно поэтому при различном освещении зрительное восприятие меняется.

Глаз человека представляет собой почти шарообразное тело, которое покоится в костной черепной полости, открытой с одной стороны. На рис. 1 изображен разрез глазного яблока и показаны основные детали глаза.

Рис. 1. Схематический разрез глаза человека.


Основная часть глазного яблока с внешней стороны ограничена трехслойной оболочкой. Внешняя твердая оболочка называется склерой (по-гречески - твердость) или белковой оболочкой . Она охватывает со всех сторон внутреннее содержание глаза и непрозрачна на всем своем протяжении за исключением передней части. Здесь склера выдается вперед, совершенно прозрачна и носит название роговой оболочки .

К склере примыкает сосудистая оболочка, переполненная кровеносными сосудами. В передней части глаза, там, где склера переходит в роговую оболочку, сосудистая оболочка утолщается, отходит под углом от склеры и направляется к середине передней камеры, образуя поперечную радужную оболочку .

Если задняя сторона радужной оболочки окрашена только в черный цвет, глаза кажутся синими, чернота просвечивает через кожицу синеватым отливом подобно жилам на руках. Если бывают еще другие цветные включения, что зависит и от количества черного цветного вещества, то глаз нам кажется зеленоватым, серым и карим и т. д. Когда в радужной оболочке нет никакого цветного вещества (как, например, у белых кроликов), то она нам кажется красной от крови, заключенной в пронизывающих ее кровеносных сосудах. В этом случае глаза плохо защищены от света - они страдают светобоязнью (альбинизмом), но в темноте превосходят по остроте зрения глаза с темной окраской.

Радужная оболочка отделяет передний выпуклый сегмент глаза от его остальной части и имеет отверстие, называемое зрачком . Сам зрачок глаза черен по той же причине, что и окна соседнего дома при дневном освещении, которые кажутся нам черными, потому что прошедший через них снаружи свет почти не выходит обратно. Зрачок пропускает внутрь глаза в каждом отдельном случае определенное количество света. Зрачок увеличивается и уменьшается независимо от нашей воли, но в зависимости от условий освещения. Явление приспособления глаза к яркости поля зрения называется адаптацией . Однако основную роль в процессе адаптации играет не зрачок, а сетчатка.

Сетчаткой называется третья, внутренняя оболочка, представляющая собой свето- и цветочувствительный слой.

Несмотря на незначительную толщину, она имеет очень сложную и многослойную структуру. Светочувствительная часть сетчатки состоит из нервных элементов, заключенных в особую поддерживающую их ткань.

Светочувствительность сетчатки не на всем ее протяжении одинакова. В части ее, расположенной против зрачка и несколько выше зрительного нерва, она обладает наибольшей чувствительностью, но ближе к зрачку она становится все менее и менее чувствительной и, наконец, сразу обращается в тонкую оболочку, прикрывающую внутреннюю часть радужной оболочки. Сетчатка представляет собой разветвления по дну глаза нервных волокон, которые затем сплетаются между собой и образуют зрительный нерв, который сообщается с головным мозгом человека.

Существуют два вида окончаний нервных волокон, выстилающих сетчатку: одни, имеющие вид стебелька и относительно длинные, называются палочками, другие, более короткие и более толстые, называются колбочками. Около 130 миллионов палочек и 7 миллионов колбочек насчитывают на сетчатке. Как палочки, так и колбочки очень малы и видны только при увеличении в 150–200 раз под микроскопом: толщина палочек около 2 микрон (0,002 мм), а колбочек 6–7 микрон. В наиболее чувствительном к свету месте сетчатки против зрачка расположены почти одни колбочки, плотность их здесь достигает 100 000 на 1 мм 2 , причем каждые два-три светочувствительных элемента соединены непосредственно с нервными волокнами. Здесь находится так называемая центральная ямка диаметром 0,4 мм. Вследствие этого глаз обладает способностью различать мельчайшие детали лишь только в центре поля зрения, ограничиваемом углом в 1°,3. Так, например, опытные шлифовщики различают просветы в 0,6 микрона, тогда как обычно человек способен заметить просвет в 10 микрон.

Ближайшая к центральной ямке область, так называемое желтое пятно , имеет угловое протяжение 6–8°.

Палочки расположены в пределах всей сетчатки, причем наибольшая концентрация их наблюдается в зоне, смещенной на 10–12° от центра. Здесь на одно волокно зрительного нерва приходится несколько десятков и даже сотен палочек. Периферическая часть сетчатой оболочки служит для общей зрительной ориентировки в пространстве. При помощи специального глазного зеркала, предложенного Г. Гельмгольцем, можно видеть на сетчатке второе пятно, имеющее белую окраску. Это пятно расположено на месте ствола зрительного нерва, и так как здесь уже нет ни колбочек, ни палочек, то этот участок сетчатки не чувствителен к свету и называется поэтому слепым пятном . Слепое пятно сетчатки имеет диаметр 1,88 мм, что соответствует 6° по углу зрения. Это значит, что человек с расстояния 1 м может не видеть предмета, имеющего диаметр около 10 см, если изображение этого предмета проектируется на слепое пятно. Палочки и колбочки различаются по своим функциям: палочки обладают большой чувствительностью, но не «различают» цветов и являются аппаратом сумеречного зрения, т. е. зрения при слабом освещении; колбочки чувствительны к цветам, но зато менее светочувствительны и поэтому являются аппаратом дневного зрения.

У многих животных за сетчаткой находится тонкий мерцающий зеркальный слой, усиливающий действие попадающего в глаз света путем отражения. Глаза таких животных блестят в темноте как раскаленные уголья. Речь идет не о полной темноте, где это явление, конечно, наблюдаться не будет.

Адаптация зрения является сложным процессом переключения глаза с работы колбочковым аппаратом на палочковый (темновая адаптация) или наоборот (световая адаптация). При этом до сих пор остаются неизвестными процессы изменения концентрации светочувствительных элементов в клетках сетчатки, когда чувствительность ее повышается при темновой адаптации в десятки тысяч раз, а также и прочие изменения свойств сетчатки в различных фазах адаптации. Фактические данные процесса адаптации определены достаточно строго и могут быть здесь приведены. Так, в процессе темновой адаптации чувствительность глаза к свету сначала быстро повышается, и это продолжается около 25–40 минут, причем время зависит от уровня начальной адаптации. При длительном пребывании в темноте чувствительность глаза к свету повышается в 50 000 раз и достигает абсолютного светового порога.

Выражая абсолютный порог в люксах освещенности на зрачке, получают в среднем величину порядка 10 -9 люкс.

Это значит, грубо говоря, что в условиях полной темноты наблюдатель смог бы заметить свет от одной стеариновой свечи, удаленной от него на расстоянии 30 км. Чем выше яркость начального поля адаптации, тем медленнее приспосабливается глаз к темноте, и в этих случаях пользуются понятием относительных порогов чувствительности.

При обратном переходе от темноты к свету процесс адаптации до восстановления некоторой «постоянной» чувствительности длится всего лишь 5–8 минут, и чувствительность изменяется всего лишь в 20–40 раз. Таким образом, адаптация - это не просто изменение диаметра зрачка, но и сложные процессы на сетчатке и в связанных с нею через зрительный нерв участках коры головного мозга.

Сразу же за зрачком глаза расположено совершенно прозрачное, эластичное тело, заключенное в особую сумку, прикрепленную к радужной оболочке системой мышечных волокон. Это тело имеет форму собирательной двояковыпуклой линзы и носит название хрусталика . Назначение хрусталика состоит в том, чтобы преломлять световые лучи и давать на сетчатке глаза ясное и отчетливое изображение предметов, находящихся в поле зрения.

Следует заметить, что в образовании изображения на сетчатке кроме хрусталика принимает участие и роговица, и внутренние полости глаза, заполненные средами с показателями преломления, отличающимися от единицы.

Преломляющая способность всего глаза в целом, а также отдельных частей его оптической системы зависит от радиусов ограничивающих их поверхностей, от показателей преломления веществ и взаимного расстояния между ними. Все эти величины для разных глаз имеют различные значения, поэтому и оптические данные разных глаз различны. В связи с этим вводится понятие схематического или приведенного (редуцированного) глаза, у которого: радиус кривизны преломляющей поверхности 5,73 мм, показатель преломления 1,336, длина глаза 22,78 мм, переднее фокусное расстояние 17,054 мм, заднее фокусное расстояние 22,78 мм.

Хрусталик глаза образует на сетчатке (так же как объектив фотоаппарата на матовой пластинке) перевернутое изображение тех предметов, на которые мы смотрим. В этом легко убедиться. Возьмем кусок плотной бумаги или почтовую открытку и проколем в ней булавкой маленькое отверстие. Затем поставим булавку головкой вверх на расстояние 2–3 см от глаза и будем смотреть этим глазом через отверстие в бумаге, поставленной на расстояние 4–5 см, на яркое дневное небо или на лампу в молочной колбе. Если подобраны благоприятные для данного глаза расстояния между глазом и булавкой, булавкой и бумагой, то в светлом отверстии мы будем видеть то, что изображено на рис. 2.



Рис. 2


Тень булавки на сетчатке будет прямой, но изображение булавки нам будет казаться перевернутым. Любое перемещение булавки в стороны будет восприниматься нами как перемещение ее изображения в обратном направлении. Очертание булавочной головки, не очень четкое, будет казаться при этом находящимся по ту сторону листка бумаги.

Тот же опыт можно проделать иным способом. Если в куске плотной бумаги проколоть три отверстия, расположенные в вершинах равностороннего треугольника со сторонами, приблизительно равными 1,5–2 мм, и затем расположить, так же как и ранее, булавку и бумагу перед глазом, то будут видны три обратных изображения булавки.

Эти три изображения образуются благодаря тому, что лучи света, проходящие через каждое из отверстий, не пересекаются, так как отверстия находятся в передней фокальной плоскости хрусталика. Каждый пучок дает прямую тень на сетчатке, и каждая тень воспринимается нами как перевернутое изображение.

Если приставить к глазу бумагу с тремя отверстиями, а к источнику света - бумагу с одним отверстием, то наш глаз будет видеть обращенный треугольник. Все это убедительно доказывает, что наш глаз все предметы воспринимает в прямом виде потому, что рассудок переворачивает их изображения, получающиеся на сетчатке.

Еще в начале 20-х годов американец А. Стрэттон и в 1961 г. профессор Калифорнийского института доктор Ирвин Муд поставили на себе интересный эксперимент. В частности, И. Муд надел плотно прилегающие к лицу специальные очки, через которые видел все так, как на матовом стекле фотоаппарата. Восемь дней он, проходя несколько десятков шагов, ощущал симптомы морской болезни, путал левую сторону с правой, верх и низ. А потом, хотя очки по-прежнему были перед глазами, снова увидел все таким, каким видят все люди. Ученый снова обрел свободу движений и способность к быстрой ориентировке.

В своих очках он проехал на мотоцикле по самым оживленным улицам Лос-Анжелоса, водил автомобиль, пилотировал самолет. А затем Муд снял очки - и мир вокруг него опять «перевернулся». Пришлось ждать еще несколько дней, пока все вошло в норму. Эксперимент еще раз подтвердил, что воспринимаемые зрением образы попадают в мозг не такими, какими их передает на сетчатку оптическая система глаза. Зрение - это сложный психологический процесс, зрительные впечатления согласуются с сигналами, получаемыми другими органами чувств.

Требуется время, прежде чем вся эта сложная система настроится и начнет функционировать нормально. Именно такой процесс происходит с новорожденными, которые первое время видят все перевернутым и лишь спустя некоторое время начинают воспринимать зрительные ощущения правильно.

Поскольку сетчатка не является плоским экраном, а имеет скорее сферическую форму, то и изображение на ней не будет плоским. Однако и этого мы не замечаем в процессе зрительного восприятия, так как наш рассудок способствует тому, чтобы мы воспринимали предметы такими, какие они есть в действительности.

Сумка, в которой укреплен хрусталик, представляет собой кольцеобразную мышцу. Эта мышца может находиться в состоянии натяжения, что заставляет хрусталик принимать наименее искривленную форму. Когда натяжение этой мышцы уменьшается, хрусталик под действием упругих сил увеличивает свою кривизну. Когда хрусталик растянут, он дает на сетчатке глаза резкое изображение предметов, находящихся на больших расстояниях; когда же он не растянут и кривизна его поверхностей велика, то на сетчатой оболочке глаза получается резкое изображение близких предметов. Изменение кривизны хрусталика и приспособление глаза к отчетливому восприятию далеких и близких предметов представляет собой еще одно весьма важное свойство глаза, которое называется аккомодацией.

Явление аккомодации легко наблюдать следующим образом: будем смотреть одним глазом вдоль натянутой длинной нити. При этом, желая видеть близкие и дальние участки нити, мы будем менять кривизну поверхностей хрусталика. Заметим, что на расстоянии до 4 см от глаза нить вообще не видна; только начиная с 10–15 см мы ее видим четко и хорошо. Это расстояние различно для людей молодых и старых, для близоруких и дальнозорких, причем для первых оно меньше, а для вторых больше. Наконец, наиболее удаленная от нас часть нити, видимая четко при данных условиях, будет также различно удалена для этих людей. Близорукие люди не будут видеть нить далее 3 м.

Оказывается, например, что для рассматривания одного и того же печатного текста у различных людей будут различные расстояния наилучшего видения. Расстояние наилучшего видения, на котором нормальный глаз испытывает наименьшее напряжение при рассматривании деталей предмета, составляет 25–30 см.

Пространство между роговицей и хрусталиком известно под названием передней камеры глаза . Эта камера заполнена студенистой прозрачной жидкостью. Вся внутренность глаза между хрусталиком и глазным нервом заполнена несколько иного рода стекловидным телом. Являясь средой прозрачной и преломляющей, это стекловидное тело в то же время способствует сохранению формы глазного яблока.

В заключении к своей книге «О летающих тарелках» американский астроном Д. Мензел пишет: «Во всяком случае помните, что летающие тарелки: 1) действительно существуют; 2) их видели; 3) но они совсем не то, за что их принимают ».

В книге описаны многие факты, когда наблюдатели видели летающие тарелки или подобные им необычные светящиеся предметы, и приведено несколько исчерпывающих объяснений различных оптических явлений в атмосфере.

Одним из возможных объяснений появления в поле зрения светящихся или темных предметов могут быть так называемые энтоптические явления в глазу, заключающиеся в следующем.

Иногда, устремляя взгляд на яркое дневное небо или на освещенный солнцем чистый снег, мы видим одним глазом или двумя маленькие темные кружочки, которые опускаются вниз. Это не обман зрения и не какой-либо недостаток глаза. Небольшие включения в стекловидное тело глаза (например, крошечные сгустки крови, попавшие туда из кровеносных сосудов сетчатки) при фиксации взгляда на очень светлый фон отбрасывают тени на сетчатку глаза и становятся ощутимыми. Каждое движение глаза как бы подбрасывает эти мельчайшие частички, а потом они под действием силы тяжести опускаются.

Предметы самого различного вида, например пылинки, могут находиться на поверхности нашего глаза. Если такая пылинка попадет на зрачок и будет озарена ярким светом, она покажется большим светлым шаром с неясными очертаниями. Ее можно принять за летающую тарелку, и это уж будет иллюзия зрения.

Подвижность глаза обеспечивается действием шести мышц, прикрепленных, с одной стороны, к глазному яблоку, а с другой - к глазной орбите.

Когда человек рассматривает, не поворачивая головы, неподвижные предметы, расположенные в одной фронтальной плоскости, то глаза или остаются неподвижными (фиксированными) или быстро меняют точки фиксации скачками. А. Л. Ярбусом разработана точная методика определения последовательных перемещений глаза при рассматривании различных предметов. В результате опытов установлено, что глаза остаются неподвижными 97 % времени, но зато время, затраченное на каждый акт фиксации, мало (0,2–0,3 сек), и в течение одной минуты глаза могут менять точки фиксации до 120 раз. Интересно, что у всех людей продолжительность скачков (для одних и тех же углов) совпадает с изумительной точностью: ±0,005 сек.

Продолжительность скачка не зависит от попыток наблюдателя «совершить» скачок побыстрее или помедленнее.

Она зависит только от величины угла, на который совершается скачок. Скачки обоих глаз совершаются синхронно.

Когда человек «плавно» обводит взором какую-нибудь неподвижную фигуру (например, круг), ему кажется, что глаза движутся непрерывно. В действительности же и в этом случае движение глаз скачкообразно, причем величина скачков очень мала.

При чтении глаз читающего останавливается не на каждой букве, а только на одной из четырех-шести, и, несмотря на это, мы понимаем смысл прочитанного.

Очевидно, при этом используется заранее накопленный опыт и сокровища зрительной памяти.

При наблюдении движущегося объекта процесс фиксации происходит при скачкообразном перемещении глаз, с той же результирующей угловой скоростью, с которой движется и объект наблюдения; при этом изображение объекта на сетчатке остается относительно неподвижным.

Укажем вкратце на другие свойства глаза, которые имеют отношение к нашей теме.

На сетчатой оболочке глаза получается изображение рассматриваемых предметов, причем всегда предмет нам виден на том или ином фоне. Это означает, что некоторая часть светочувствительных элементов сетчатки раздражается световым потоком, распределенным по поверхности изображения предмета, а окружающие светочувствительные элементы раздражаются потоком от фона. Способность глаз обнаруживать рассматриваемый объект по его контрасту с фоном называется контрастной чувствительностью глаза . Отношение разности яркостей предмета и фона к яркости фона называется контрастом яркости . Контраст увеличивается, когда при неизменной яркости фона увеличивается яркость объекта или при неизменной яркости объекта уменьшается яркость фона.

Способность глаза различать форму предмета или его детали называют остротой различения . Если изображение двух близких точек на сетчатой оболочке глаза возбудит соседние светочувствительные элементы (причем если разность яркостей этих элементов выше пороговой разности яркостей), то эти две точки видны раздельно. Наименьший размер видимого предмета определяется наименьшим размером его изображения на сетчатке глаза. Для нормального глаза этот размер равен 3,6 микрона. Такое изображение получается от предмета размером 0,06 мм, расположенного на расстоянии 25 см от глаза.

Правильнее определить предел углом зрения; для указанного случая он составит 50 угловых минут. Для больших расстояний и ярко светящихся предметов предельный угол зрения уменьшается. Пороговой разностью яркостей в данных условиях мы называем наименьший перепад яркостей, воспринимаемый нашим глазом.

Практически глаз обнаруживает разность яркостей в 1,5–2 %, а в благоприятных условиях до 0,5–1 %. Однако пороговая разность яркостей сильно зависит от многих причин: от яркости, к которой глаз был предварительно приспособлен, от яркости фона, на котором будут видны сравниваемые поверхности. Замечено, что сравнивать темные поверхности лучше на фоне более темном, чем сравниваемые поверхности, а светлые поверхности, наоборот, - на более ярком фоне.

Источники света, находящиеся достаточно далеко от глаза, мы называем «точечными», хотя в природе светящихся точек не существует. Видя эти источники, мы ничего не можем сказать о их форме и диаметре, они нам кажутся лучистыми, как и далекие звезды. Эта иллюзия зрения обусловлена недостаточной остротой различения (разрешающей способностью) глаза.

Во-первых, вследствие неоднородности хрусталика лучи, проходящие через него, преломляются так, что звезды окружаются лучистым ореолом.

Во-вторых, изображение звезды на сетчатке настолько мало, что не перекрывает двух светочувствительных элементов, разделенных хотя бы одним нераздраженным элементом. Разрешающая способность глаза увеличивается при помощи оптических приборов наблюдения и, в частности, телескопов, через которые, например, все планеты видны нам как круглые тела.

Приведение осей обоих глаз в положение, необходимое для наилучшего восприятия расстояний, называется конвергенцией . Результат действия мышц, перемещающих глаз для лучшего видения близких и дальних предметов, можно наблюдать следующим образом. Если мы будем смотреть через сетку на окно, то неясные отверстия сетки будут нам казаться большими, а если же смотреть на карандаш перед этой сеткой, то отверстия сетки будут казаться значительно меньшими.

Точки сетчаток двух глаз, обладающие тем свойством, что раздражающий объект виден нам находящимся в одной точке пространства, называются корреспондирующими .

Благодаря тому, что два наших глаза находятся на некотором расстоянии и их оптические оси скрещиваются определенным образом, изображения предметов на разных (не корреспондирующих) участках сетчаток получаются тем более отличными одно от другого, чем ближе к нам находится рассматриваемый предмет. Автоматически, как нам кажется, как бы без участия сознания, мы учитываем эти особенности изображений на сетчатках, и по ним не только судим об удаленности предмета, но и воспринимаем рельеф и перспективу. Эта способность нашего зрения называется стереоскопическим эффектом (греческое стерео - объем, телесность). Нетрудно понять, что наш мозг при этом так же выполняет определенную работу, как и при переворачивании изображения предмета на сетчатке.

Наш орган зрения обладает еще весьма замечательным свойством: он различает огромное многообразие цветов предметов. Современная теория цветового зрения объясняет эту способность глаза наличием на сетчатой оболочке трех видов первичных аппаратов.

Видимый свет (волны электромагнитных колебаний длиною от 0,38 до 0,78 мк) возбуждает эти аппараты в разной степени. Опытом установлено, что колбочковый аппарат обладает наибольшей чувствительностью к желто-зеленым излучениям (длина волны 0,555 мк). В условиях же действия сумеречного (палочкового) аппарата зрения максимум чувствительности глаза смещается в сторону более коротких волн фиолетово-синего участка спектра на 0,45-0,50 мк. Эти возбуждения первичных аппаратов сетчатки обобщаются корой головного мозга, и мы воспринимаем определенный цвет видимых предметов.

Все цвета принято делить на хроматические и ахроматические . Каждый хроматический цвет имеет цветовой тон, чистоту цвета и яркость (красный, желтый, зеленый и т. д.). Ахроматические цвета в сплошном спектре отсутствуют - они бесцветны и отличаются друг от друга только яркостью. Эти цвета образуются благодаря избирательному отражению или пропусканию дневного света (белый, все серые и черный цвет). Текстильщики, например, способны различать до 100 оттенков черного цвета.

Таким образом, зрительные ощущения позволяют нам судить о цвете и яркости предметов, о их размерах и форме, о их движении и взаимном расположении в пространстве. Следовательно, и восприятие пространства является в основном функцией зрения.

В этой связи уместно остановиться еще на одном способе определения взаимного расположения предметов в пространстве - на способе зрительного параллакса.

Расстояние до предмета оценивают или по тому углу, под которым виден этот предмет, зная угловые размеры других видимых предметов, или пользуясь стереоскопической способностью зрения, которая и создает впечатление рельефности. Оказывается, что на удалении, большем 2,6 км, рельеф уже не воспринимается. Наконец, расстояние до предмета оценивается просто степенью изменения аккомодации или путем наблюдения положения этого предмета по отношению к положению других предметов, находящихся на известных нам расстояниях.

При ложном представлении о размере предмета можно допустить большую ошибку в определении расстояния до него. Оценка расстояния с помощью обоих глаз значительно точнее, чем при помощи одного глаза. Один глаз оказывается полезнее, чем два при определении направления на предмет, например при прицеливании. Когда глаз рассматривает не предмет, а изображение, полученное с помощью линз или зеркал, то все указанные выше способы определения расстояния до предмета иногда оказываются неудобными, а то и вовсе непригодными.

Как правило, размеры изображения совершенно не совпадают с размерами самого предмета, поэтому ясно, что мы не можем судить о расстоянии по видимым размерам изображения. При этом очень трудно отделить изображение от самого предмета, и это обстоятельство может явиться причиной очень сильного оптического обмана.

Например, предмет, рассматриваемый через вогнутые чечевицы, кажется находящимся от нас на гораздо большем расстоянии, чем в действительности, ибо его видимые размеры меньше истинных. Эта иллюзия настолько сильна, что она более чем нейтрализует определение расстояния, к которому нас приводит аккомодация глаза. Поэтому нам остается прибегнуть только к единственному способу, при помощи которого мы можем, без всяких приборов, судить о расстоянии до предмета, а именно, к определению положения данного предмета по отношению к другим предметам. Этот метод и именуется методом параллакса . Если наблюдатель встанет перед окном (рис. 3), а между окном и наблюдателем будет находиться какой-нибудь предмет, скажем штатив на столе, и если, далее, наблюдатель передвинется, например влево, то он увидит, что штатив как бы передвинулся вдоль окна вправо. С другой стороны, если наблюдатель взглянет через окно на какой-нибудь предмет, скажем на ветви деревьев, и передвинется в том же направлении, то и предмет за окном передвинется туда же. Заменяя окно линзой и наблюдая через линзу изображение печатного текста, можно определить, где находится это изображение: если за линзой, то оно будет перемещаться при перемещении глаза в ту же сторону, что и глаз. Если же изображение ближе к глазу, чем линза, то оно будет перемещаться в направлении, обратном перемещению глаза.



Рис. 3. Явление параллакса. При движении наблюдателя вправо С и D перемещаются вдоль окна влево (причем С перемещается меньше, чем D ). Одновременно ветки дерева за окном (А и В ) перемещаются вдоль окна вправо (причем дальняя ветка передвинется вправо больше, чем ближняя).


Акт зрительного восприятия рассматривается теперь как сложная цепь различных процессов и превращений, еще до сих пор недостаточно изученных и понятых. За сложным фотохимическим процессом в сетчатой оболочке глаза следуют нервные возбуждения волокон зрительного нерва, которые затем передаются коре головного мозга.

Наконец, в пределах коры головного мозга происходит оформление зрительных восприятий; здесь они, возможно, взаимосвязываются с другими нашими ощущениями и контролируются на основании заранее приобретенного нами опыта, и только после этого начальное раздражение превращается в законченный зрительный образ.

Оказывается, мы видим в данный момент только то, что нас интересует, и это очень полезно для нас. Все поле зрения всегда заполнено разнообразными впечатляющими объектами, но наше сознание из всего этого выделяет лишь то, на что мы в данный момент обращаем особое внимание.

Однако все неожиданно появляющееся в поле нашего зрения способно невольно привлечь наше внимание.

Например, при интенсивной умственной работе нам может сильно помешать качающаяся лампа: глаза поневоле фиксируют это движение, а это в свою очередь рассеивает внимание.

Наше зрение обладает наибольшей пропускной способностью и может передать в мозг в 30 раз больше информации, чем наш слух, хотя зрительный сигнал достигает мозга через 0,15 сек, слуховой через 0,12 сек, а осязательный через 0,09 сек.

Следует заметить, что все важнейшие свойства глаза тесным образом между собой связаны; они не только зависят друг от друга, но и проявляются в различной степени, например при изменении яркости поля адаптации, т. е. яркости, к которой приспособлен человеческий глаз в данных конкретных условиях и в данный момент времени.

Указанные здесь способности органа зрения человека часто имеют у различных людей различную степень развитости и чувствительности. «Глаз - это чудо для пытливого ума », - говорил английский физик Д. Тиндаль.