Красота глаз Очки Россия

Организмы и их роль в почвообразовании. Роль живых организмов в почвообразовании Какие группы живых организмов участвуют в почвообразовании

Зеленые растения

Различные группы растений обусловливают неодинаковый ход биологического круговорота. Низшие растения имеют небольшую продолжительность жизни и, следовательно, определяют быстрое обращение элементов в биологическом круговороте. Высшие растения имеют развитую корневую систему, обеспечивающую большую площадь соприкосновения организма с почвой. Круговорот осуществляется в течение одного года у травянистой растительности и в течение нескольких лет (десятков, сотен, тысяч) - у древесной. При этом разные элементы не одинаковое время удерживаются растительными организмами. В природе часто наблюдается сочетание рассматриваемых групп растений. Различают следующие их группы:

лишайниково-моховые формации занимают тундру и болота;

древесная формации - это таежный и широколиственный леса, влажные субтропические леса и тропические (дождевые) леса;

к группе переходных древесно-травянистых формациям относятся ксерофитные леса, эта группа растений типична для лесостепи и саванны;

к группе травянистых формаций отнесены суходольные и заболоченные луга, прерии, степи умеренного пояса, субтропические кустарниковые степи;

пустынная формация делится в свою очередь на суббореальную, субтропическую, тропическую.

Каждая формация характеризуется своим особенным составом и свойством органического вещества, процессами разложения органики. Биомасса каждой растительной формации также имеет свои отличия, что отражается на составе органического вещества почв.

Водоросли распространены во всех почвах, в их поверхностном слое. В почве распространены диатомовые, сине-зеленые и зеленые водоросли. Количество их зависит от увлажнения почвы. Все они автотрофы. Синтезируют органику путем фотосинтеза. Водоросли, при отмирании, обогащают почву органическим веществом, легко разлагающимся микроорганизмами. Участвуют в процессах выветривания горных пород.

Микроорганизмы участвуют в трансформации органических остатков, превращая их либо в гумус, либо разрушая органику до конечных продуктов, при этом сложные органические соединения разлагаются до минеральных солей, доступные для растительности. Бактерии усваивают атмосферный азот и снабжают им высшие растения, синтезируют сложные органические соединения, строя из них свое тело. Участвуют в окислительно-восстановительных процессах в почве, изменяя степень окисленности различных органических и минеральных соединений. Таким образом, почти все звенья почвообразовательного процесса связаны с жизнедеятельностью микроорганизмов. Все эти процессы микроорганизмы осуществляют при помощи ферментов.

Грибы - это сапрофитные гетеротрофные организмы. Нельзя не отметить большую роль грибов, которые лучше развиваются в почвах с низкими показателями рН. Эти организмы обладают широким комплексом гидролитических ферментов, посредством которых осуществляют разложение всех видов органических веществ. В том числе они разлагают устойчивые к гидролизу и окислению такие соединения как лигнин, фенолы, хиноны, ароматические углеводороды, воска

Велика роль в почвообразовании червей , а также млекопитающих, живущих в почве, прокладывающих в почве ходы диаметром от нескольких миллиметров до 4 до 12 см., перемешивающие почву на разные глубины, в основном на глубину до 1 метра, выделяющие ферменты, органические кислоты, увеличивающие при отмирании биомассу почвы.

Биологический фактор почвообразования - В почвообразовании участвуют три группы организмов - зеленые растения, микроорганизмы и животные, составляющие сложные биоценозы.

Растительность. Растения являются единственным первоисточником органических веществ в почве. Основной функцией их как почвообразователей следует считать биологический круговорот веществ - синтез биомассы за счет углекислого газа атмосферы, солнечной энергии, воды и минеральных соединений, поступающих из почвы. Биомасса растений в виде корневых остатков и наземного опада возвращается в почву. Характер участия зеленых растений в почвообразовании различен и зависит от типа растительности и интенсивности биологического круговорота (табл. 5.1).

Все живые организмы на Земле образуют биологические сообщества (ценозы) и биологические формации, с которыми неразрывно связаны процессы образования и развития почв,

Учение о растительных формациях с точки зрения почвоведения было разработано В. Р. Вильямсом. В качестве основных критериев для разделения растительных формаций им были приняты такие показатели, как состав растительных группировок, особенности поступления в почву органического вещества и характер его разложения под воздействием микроорганизмов при различном соотношении аэробных и анаэробных процессов.

В настоящее время при изучении роли растительных ценозов в почвообразовании дополнительно учитывается характер и интенсивность биологического круговорота веществ; Это позволяет расширить учение о растительных формациях с точки зрения почвоведения и дать более детальное их разделение.

Согласно Н. Н. Розову, различают следующие основные группы растительных формаций:

  1. деревянистая растительная формация: таежные леса, широколиственные леса, влажные субтропические леса и ливневые тропические леса;
  2. переходная деревянисто - травянистая растительная формация: ксерофитные леса, саванны;
  3. травянистая растительная формация: суходольные и заболоченные луга, травянистые прерии, степи умеренного пояса, субтропические кустарниковые степи;
  4. пустынная растительная формация: растительность суббореального, субтропического и тропического почвенно - климатических поясов;
  5. лишайниково - моховая растительная формация: тундра, верховые болота.
Для каждой группы растительных формаций, а внутри группы для каждой формации характерен определенный биологический цикл превращения веществ в почве. Он зависит от количества и состава органического вещества, а также от особенностей взаимодействия продуктов распада с минеральной частью почвы. Поэтому различия в растительности являются главной причиной почвенного многообразия в природе. Так, под широколиственным лесом и лугово - степной растительностью в одинаковых условиях климата и рельефа и на одних и тех же породах будут формироваться разные почвы.

Лесная растительность - это многолетняя растительность, поэтому ее остатки поступают в основном на поверхность почвы в виде наземного опада, из которого формируется лесная подстилка. Водорастворимые продукты разложения поступают в минеральную толщу почвы. Особенностью биологического круговорота в лесу является длительная консервация значительного количества азота и зольных элементов питания растений в многолетней биомассе и выключение их из ежегодного биологического круговорота. В различных природных условиях формируются разные типы леса, что и определяет характер почвообразовательного процесса, а следовательно, и тип формирующихся почв.

Травянистая растительность образует в почве густую сеть тонких корней, переплетающих всю верхнюю часть почвенного профиля, биомасса которых обычно превышает биомассу наземной части. Поскольку наземная часть травянистой растительности отчуждается человеком и поедается животными, то основным источником органического вещества в почве под травянистой растительностью являются корни. Корневые системы и продукты их гумификации оструктуривают верхнюю корнеобитаемую часть профиля, в которой постепенно формируется гумусовый горизонт, богатый элементами питания. Интенсивность процессов определяется природными условиями, так как в зависимости от типа травянистых формаций количество образующейся биомассы и интенсивность биологического круговорота различны. Поэтому в разных природных условиях под травянистой растительностью образуются различные почвы. Мохово - лишайниковая растительность характеризуется тем, что при большой влагоемкости имеет малую активность в биологическом круговороте. Это является причиной консервации отмирающих растительных остатков, которые при достаточной и избыточной влажности превращаются в торф, а при постоянном иссушении легко развеваются ветром.

Микроорганизмы. (Роль микроорганизмов в почвообразовании не менее значительна, чем роль растений. Несмотря на малые размеры, они в силу своей многочисленности имеют огромную суммарную поверхность и потому активно соприкасаются с почвойу По данным Е. Н. Мишустина, на 1 га пахотного слоя почвы площадь активной поверхности бактерий достигает 5 млн м 2 . Вследствие кратковременности жизненного цикла и высокой размножаемости микроорганизмы сравнительно быстро обогащают почву значительным количеством органического вещества) По подсчетам И. В. Тюрина, ежегодное поступление в почву сухого микробного вещества может составлять 0,6 тга. (Эта биомасса, богатая протеинами, содержащая много азота, фосфора, калия, имеет большое значение для почвообразования и формирования плодородия почвы.

Микроорганизмы являются тем активным фактором, с деятельностью которого связаны процессы разложения органических веществ и превращения их в почвенный перегной. Микроорганизмы осуществляют фиксацию атмосферного азота. Они выделяют ферменты, витамины, ростовые и другие биологические вещества. От деятельности микроорганизмов зависит поступление в почвенный раствор элементов питания растений, а следовательно, плодородие почвы.

Наиболее распространенным видом микроорганизмов почв являются бактерии. Их количество колеблется от нескольких сотен тысяч до миллиардов в 1 г почвы. В зависимости от способа питания бактерии подразделяют на гетеротрофные и автотрофные.

Гетеротрофные бактерии используют углерод органических соединений, разлагая органические остатки до простых минеральных соединений.

Автотрофные бактерии усваивают углерод из углекислоты воздуха и окисляют недоокисленные минеральные соединения, образующиеся в процессе деятельности гетеротрофов.

По типу дыхания бактерии делят на аэробные, развивающиеся при наличии молекулярного кислорода, и анаэробные, не требующие для своей эволюции свободного кислорода.

Подавляющее большинство бактерий лучше всего развивается при нейтральной реакции среды. В кислой среде они малодеятельны.

Актиномицеты (плесневидные бактерии, или лучистые грибы) содержатся в почвах в меньших количествах, чем другие бактерии; однако они очень разнообразны, и им принадлежит важная роль в почвообразовательном процессе. Актиномицеты разлагают клетчатку, лигнин, перегнойные вещества почвы, участвуют в образовании гумуса. Они лучше развиваются в почвах с нейтральной или слабощелочной реакцией, богатых органическим веществом и хорошо обрабатываемых.

Грибы - сапрофиты - гетеротрофные организмы. Они встречаются во всех почвах. Имея ветвящийся мицелий, грибы густо переплетают органические остатки в почве. В аэробных условиях они разлагают клетчатку, лигнин, жиры, белки и другие органические соединения. Грибы участвуют в минерализации гумуса почвы.

Грибы способны вступать в симбиоз с растениями, образуя внутреннюю или внешнюю микоризы. В этом симбиозе гриб получает от растения углеродное питание, а сам обеспечивает растение азотом, образующимся при разложении азотсодержащих органических соединений почвы.

Водоросли распространены во всех почвах, главным образом в поверхностном слое. Содержат в своих клетках хлорофилл, благодаря которому способны усваивать углекислый газ и выделять кислород.

Водоросли активно участвуют в процессах выветривания пород и в первичном процессе почвообразования.

Лишайники в природе обычно развиваются на бедных почвах, каменистых субстратах, в сосновых борах, тундре и пустыне.

Лишайник представляет собой симбиоз гриба и водоросли. Водоросль лишайника синтезирует органическое вещество, которое использует гриб, а гриб обеспечивает водоросли водой и растворенными в ней минеральными веществами.

Лишайники разрушают породу биохимически - путем растворения и механически - при помощи гифов и слоевищ (тело лишайника), прочно срастающихся с поверхностью.

С момента поселения лишайников на горных породах начинается более интенсивное биологическое выветривание и первичное почвообразование.

Простейшие представлены в почве классами корненожек (амебы), жгутиковых и инфузорий. Они питаются преимущественно микроорганизмами, населяющими почву. Некоторые простейшие содержат диффузно растворенный в протоплазме хлорофилл и способны ассимилировать углекислоту и минеральные соли. Отдельные виды могут разлагать белки, углеводы, жиры и даже клетчатку.

Вспышки деятельности простейших в почве сопровождаются уменьшением числа бактерий. Поэтому принято считать проявление активности простейших как показатель, отрицательный для плодородия. В то же время некоторые данные свидетельствуют, что в ряде случаев с развитием амеб в почве возрастает количество усвояемых форм азота.

Микроорганизмы в почве образуют сложный биоценоз, в котором различные их группы находятся в определенных взаимоотношениях, меняющихся в зависимости от изменений условий почвообразования.

На характер микробных биоценозов влияют условия водного, воздушного и теплового режимов почв, реакция среды (кислотная или щелочная), состав органических остатков и др. Так, с увеличением влажности почвы и ухудшением аэрации усиливается деятельность анаэробных микроорганизмов; с увеличением кислотности почвенного раствора угнетаются бактерии и активизируются грибы.

Все группы микроорганизмов чутко реагируют на изменение внешних условий, поэтому в течение года их деятельность очень неравнозначна. При очень высоких и низких температурах воздуха биологическая деятельность в почвах замирает.

(Регулируя условия жизнедеятельности микроорганизмов, можно существенно влиять на плодородие почвы. Обеспечивая рыхлое сложение пахотного слоя и оптимальные условия увлажнения, нейтрализуя кислотность почв, мы благоприятствуем развитию нитрификации и накоплению азота, мобилизации других элементов питания и в целом создаем благоприятные условия для развития растений.)

Животные . Почвенная фауна довольно многочисленна и разнообразна, она представлена беспозвоночными и позвоночными животными.

Наиболее активные почвообразователи из числа беспозвоночных - дождевые черви. Начиная с Ч. Дарвина, многие ученые отмечали их важную роль в почвообразовательном процессе.

Дождевые черви распространены практически повсеместно как в окультуренных, так и в целинных почвах. Их количество колеблется от сотен тысяч до нескольких миллионов на 1 га. Перемещаясь внутри почвы и питаясь растительными остатками, дождевые черви активно участвуют в переработке и разложении органических остатков, пропуская через себя огромную массу почвы в процессе пищеварения.

По данным Н. А. Димо, на поливных окультуренных сероземах черви выбрасывают ежегодно на поверхность площадью 1 га до 123 т переработанной почвы в виде экскрементов (копролитов). Копролиты представляют собой хорошо агрегированные комочки, обогащенные бактериями, органическим веществом и углекислым кальцием. Исследованиями С. И. Пономаревой установлено, что выбросы дождевых червей на дерново - подзолистой почве обладают нейтральной реакцией, содержат на 20 % больше перегноя и поглощенного кальция. Все это говорит о том, что дождевые черви улучшают физические свойства почв, делают их более рыхлыми, воздухо - и водопроницаемыми, тем самым способствуя повышению их плодородия.

Насекомые - муравьи, термиты, шмели, осы, жуки и их личинки - также участвуют в процессе почвообразования. Проделывая в почве многочисленные ходы, они разрыхляют почву и улучшают ее водно - физические свойства. Кроме того, питаясь растительными остатками, они перемешивают их с почвой, а отмирая, сами служат источником обогащения почвы органическими веществами.

Позвоночные животные - ящерицы, змеи, сурки, мыши, суслики, кроты - осуществляют огромную работу по перемешиванию почвы. Проделывая в толще почвы норы, они выбрасывают на поверхность большое количество земли. Образовавшиеся ходы (кротовины) засыпаются массой почвы или породы и на почвенном профиле имеют округлую форму, выделяющуюся по окраске и степени уплотненности. В степных районах землероющие животные настолько сильно перемешивают верхние и нижние горизонты, что на поверхности образуется бугорковый микрорельеф, а почва характеризуется как перерытый (кротовинный) чернозем, перерытая каштановая почва или серозем.
читайте так-же

Высшие растения как продуценты и главный источник поступления в почву органического вещества играют особую роль в почвообразовании.

Они являются своеобразным мощным насосом, перекачивающим химические элементы и воду из почвы в свои органы. Корни растений, проникая в почву, разрыхляют ее и активно воздействуют на ее фазовый состав.

Площадь лесов на планете составляет около 30 %. Оптимальные условия для лесной растительности - превышение суммарного количества осадков над испарением. Избыток влаги при господстве древесной, особенно хвойной растительности способствует интенсивному выщелачиванию растворенных соединений, глубокому разрушению минералов и выносу продуктов почвообразования за пределы профиля.

Под лесной растительностью в почвах формируется специфический биоценоз из позвоночных, беспозвоночных, грибов. Общая фитомасса лесной растительности колеблется от 3 до 5 тыс. ц/га, при этом около 500 ц/га приходится на долю ризомассы, т. е. корней.

Главная роль в лесном почвообразовании принадлежит наземному опаду и тонким корням. Общая поверхность сосущих корневых окончаний столетнего древостоя сосны на 1 га может составить до 1,5 га. У хвойных пород до 95% ризомассы сосредоточено в верхнем слое почвы (0-30 см). С корнями деревьев всегда связана микориза. Поэтому в ризосфере деревьев обитает значительное количество микроорганизмов, а численность простейших в 5-10 раз выше по сравнению с их средним содержанием в почвах.

Кислотность почвы в хвойных лесах усиливается за счет выщелачивания дождевыми водами веществ кислотной природы из живых листьев, хвои и коры. Подкисление до pH 3,3-4,5 может быть вызвано жизнедеятельностью мхов и лишайников. В ризосфере хвойных пород концентрация водородного иона всегда выше (pH ниже на 0,2-0,6), чем вне ризосферы. Водная вытяжка из хвои ели имеет pH около 4, из подстилки сосны - 4,5, а листья широколиственных пород - около 7. Резкие различия в реакции растворов продуктов из листьев и хвои объясняются тем, что для листьев и хвои характерны разные зольность и содержание оснований. При низкой зольности подстилка может иметь pH около 4,5-4,6. Нейтральная реакция типична для лесной подстилки лиственных лесов.

Роли древесной и травянистой растительности в почвообразовании существенно различны. Это связано с глубиной проникновения в почвенную толщу и распределением корневой системы, а также с различиями в величине и характере поступления растительных остатков в почву, их зольном составе.

Совокупность процессов поглощения растениями химических элементов из почвы, синтеза и разложения органического вещества, возврата химических элементов в почву называется биологическим круговоротом веществ в системе «растение - почва».

Некоторые химические элементы, участвующие в биологическом круговороте, не удерживаются почвой, выносятся геохимическим внутрипочвенным стоком за пределы почвенного профиля и включаются в большой геологический круговорот химических элементов.

Для характеристики биологического круговорота веществ используются следующие показатели: запасы фитомассы (ц/га) в надземной и подземной частях растений, величина годичного прироста фитомассы и опада, содержание зольных химических элементов в разных частях растений и в опаде. Отношение массы подстилки к массе ежегодного опада служит показателем интенсивности биологического круговорота.

Корневая система растений поглощает из почвенного раствора макроэлементы (Са, N, К, Р, S, Al, Fe) и микроэлементы (Zn, В, Мn…) минерального питания и выделяет в эквивалентном количестве ионы (Н + , ОН —), ферменты и другие органические соединения, активно участвующие в почвенных процессах. В среднем растительность умеренного климата поглощает из почвы ежегодно 100-600 кг/га минеральных веществ. Количество поглощаемых из почвы и возвращаемых в нее с растительным опадом химических элементов зависит от типа фитоценозов.

Агроценозы, приходящие на смену биогеоценозам, вносят огромные изменения в биологический круговорот веществ. С урожаем культурных растений из почвы безвозвратно выносится колоссальное количество зольных элементов. Так, с урожаем пшеницы 20-25 ц/га отчуждается из почвы до 150-200 кг/га основных элементов минерального питания (N, P, K, Ca, Mn, Fe, S, Si, Al, Mg).

Скорость разложения органических остатков и характер образующихся в результате этого процесса веществ зависят от климатических условий и состава растительности. Химический состав органических веществ, образующихся в процессе фотосинтеза, зависит от типа растений. Мхи и древесина отличаются высоким содержанием лигнина. В злаках много гемицеллюлозы, в иглах сосны - воска, жиров и смол.

В процессе разложения органических остатков в почву возвращаются зольные элементы, поглощенные растениями из почвы.

Индекс интенсивности биологического круговорота веществ максимален в заболоченных ландшафтах (более 50), где происходит прогрессивное накопление торфа и образование болотных торфяных почв. В темнохвойных таежных лесах индекс интенсивности биологического круговорота значительно меньше (10-17). Минерализация опада в хвойных лесах происходит замедленно и на поверхности почвы формируются органические горизонты, часто наблюдается образование торфяного слоя. Интенсивность биологического круговорота в степях составляет 1,0-1,5. Образующийся в естественных степных экосистемах степной войлок из травянистой растительности разлагается в течение года.

Продукты разложения хвои, листьев, трав, стволов различны по химизму и влиянию на почвообразование. Так, продукты разложения степных трав имеют близкую к нейтральной реакцию (pH = 7). Экстракты из хвои ели, вереска, лишайников, сфагнового мха имеют кислую реакцию (pH 3,5-4,5). Экстракты из полыни имеют щелочную реакцию (pH 8,0-8,5).

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Горные породы, из которых формируется почва, называются почвообразующими, или материнскими.

Почвообразующие породы характеризуются по их происхождению, составу, строению и свойствам. Почвообразующая порода является материальной основой почвы и передает ей свой механический, минералогический и химический состав, а также физические и химические свойства, которые в дальнейшем постепенно изменяются в различной степени под воздействием почвообразовательного процесса.

Свойства и состав материнских пород влияют на состав поселяющейся растительности, ее продуктивность, на скорость разложения органических остатков, качество образующегося гумуса, особенности взаимодействия органических веществ с минералами и другие стороны почвообразовательного процесса.

Главными почвообразующими породами являются рыхлые осадочные.

Осадочные породы - отложения продуктов выветривания массивно кристаллических пород или остатков различных организмов. Они подразделяются на обломочные, химические осадки и биогенные.

К наиболее распространенным осадочным породам относятся континентальные четвертичные отложения: ледниковые, водно-ледниковые, лессы и лессовидные суглинки, элювиальные, аллювиальные, делювиальные, пролювиальные, эоловые, менее распространены озерные, морские. Они различаются по характеру сложения, влагоемкости, водопроницаемости, порозности, что определяет водно-воздушный и тепловой режимы.

Биологический фактор почвообразования

Под биологическим фактором почвообразования понимается многообразное участие живых организмов и продуктов их жизнедеятельности в почвообразовательном процессе.

Наиболее могущественным фактором, оказывающим влияние на направление почвообразовательного процесса, являются живые организмы. Начало почвообразования всегда связано с поселением организмов на минеральном субстрате. В почве обитают представители всех четырех царств живой природы - растения, животные, грибы, прокариоты. Пионерами в освоении и преобразовании косного минерального вещества в почве яляются различные виды микроорганизмов, лишайники, водоросли. Они еще не создают почву, они готовят биогенный мелкозем - субстрат для поселения высших растений - основных продуцентов органического вещества. Именно им, высшим растениям, как главным накопителям вещества и энергии в биосфере, и принадлежит ведущая роль в процессах почвообразования

Роль древесной и травянистой, лесной и степной или луговой растительности в процессах почвообразования существенно различна.

Под лесом опад, являющийся главным источником гумуса, поступает преимущественно на поверхность почвы. В меньшей степени в гумусообразовании участвуют корни древесной растительности.

В хвойном лесу опад, в силу специфики его химического состава и большой механической прочности, очень медленно подвергается процессам разложения. Лесной опад вместе с грубым гумусом образует подстилку типа «мор» той или иной мощности. Процесс разложения в подстилке осуществляется преимущественно грибами; гумус имеет фульватный характер.

В смешанных и, особенно, в широколиственных лесах лиственный опад более мягкий, содержит в своем составе высокое количество оснований, богат азотом. Процесс минерализации ежегодного опада в основном совершается в течение годового цикла. В лесах подобного типа в гумусообразовании принимает большое участия опад травянистой растительности. Освобождающиеся при минерализации опада основания нейтрализуют кислые продукты почвообразования, синтезируется более насыщенный кальцием гумус гуматно-фульватного типа.

Иной характер поступления органических остатков и химических элементов в почву наблюдается под пологом травянистой степной или луговой растительности. Основным источником образования гумуса является масса отмирающих корневых систем и в значительно меньшей степени надземная масса (степной войлок, семена растений и т. д.). Это объясняется тем, что биомасса корней у травянистой растительности (в отличие от древесной) обычно значительно преобладает над надземной биомассой. Опад травянистой растительности в отличие от опада древесных пород характеризуется более тонкой структурой, меньшей механической прочностью, высокой зольностью, богатством азотом и основаниями.

Почвообразовательный процесс, протекающий под влиянием травянистой растительности, носит название дернового процесса.

Наряду с высшей растительностью большое влияние на процессы почвообразования оказывают многочисленные представители почвенной фауны - беспозвоночные и позвоночные, населяющие различные горизонты почвы и живущие на ее поверхности.

Функции беспозвоночных и позвоночных животных важны и разнообразны; одна из них - разрушение, измельчение и поедание органических остатков на поверхности почвы и внутри ее.

Вторая функция почвенных животных выражается в накоплении в их телах элементов питания и главным образом в синтезе азотсодержащих соединений белкового характера. После завершения жизненного цикла животного наступает распад тканей и возврат в почву накопленных в телах животных веществ и энергии.

Деятельность роющих животных оказывает большое влияние на перемещение масс грунта и почвы, на формирование своеобразного микро- и нанорельефа. В некоторых случаях перерытость почв и выбросы на поверхность достигают таких размеров, что возникает необходимость введения в номенклатуру почв специальных определений (например, карбонатный перерытый чернозем). Профиль таких почв имеет рыхлое, кавернозное строение, почвенные горизонты часто перемещены и трансформированы.

Таким образом, в почвообразовании участвуют три группы организмов - зеленые растения, микроорганизмы и животные, образующие на суше сложные биоценозы. Вместе с тем функции каждой из этих групп как почвообразователей различны.

Зеленые растения являются единственным первоисточником органических веществ в почве, и основной функцией их как почвообразователей следует считать биологический круговорот веществ - поступление из почвы элементов питания и воды, синтез органической массы и возврат ее в почву после завершения жизненного цикла.

Основными функциями микроорганизмов как почвообразователей являются разложение растительных остатков и почвенного гумуса до простых солей, используемых растениями, участие в образовании гумусовых веществ, в разрушении и новообразовании почвенных минералов.

Основными функциями почвенных животных является разрыхление почвы и улучшение ее физических и водных свойств, обогащение почвы гумусом и минеральными веществами.


Курс лекций «Почвоведение»

ЛЕКЦИЯ 3.Свойства почв и ее структура

1.Морфологические признаки почв 34

1.1.Строение почвы 34

1.2.Окраска почвы 38

1.3.Гранулометрический состав почв и его агрономическое значение 40

2. Органические и органо-минеральные вещества в почвах 43

2.1.Влияние условий почвообразования на гумусообразование 43

2.2.Состав гумуса 44

2.3. Гумусовое состояние почв 48

Краткий конспект Лекции 3 49

1.Морфологические признаки почв

В процессе почвообразования горная порода приобретает многоуровневую морфологическую организацию. Существуют морфоны 1,2, 3, 4,5 порядков. Для выделения морфонов существует система морфологических признаков почвы.

Морфологические признаки почвы – система показателей, позволяющей отличать морфологические элементы один от другого.

К внешним морфологическим признакам относятся:

строение,

мощность профиля и отдельных горизонтов,

гранулометрический состав,

структура,

сложение,

новообразования,

включения.

1.1.Строение почвы

Всякая почва представляет собой систему последовательно сменяющих друг друга по вертикали генетических горизонтов - слоев, на которые дифференцируется исходная материнская горная порода в процессе почвообразования.

Эта вертикальная последовательность горизонтов получила название почвенного профиля.

Почвенным профилем называется определенная вертикальная последовательность генетических горизонтов в пределах почвенного индивидуума, специфическая для каждого типа почвообразования.

Почвенный профиль представляет первый уровень морфологической организации почвы как природного тела, почвенный горизонт - второй.

Профиль почвы характеризует изменение ее свойств по вертикали, связанное с воздействием почвообразовательного процесса на материнскую горную породу. Главные факторы образования почвенного профиля, т. е. дифференциации исходной почвообразующей породы на генетические горизонты, -

это, во-первых, вертикальные потоки вещества и энергии (нисходящие или восходящие в зависимости от типа почвообразования и его годовой, сезонной или многолетней цикличности)

и, во-вторых, вертикальное распределение живого вещества (корневые системы растений, микроорганизмы, почвообитающие животные).

Строение почвенного профиля, т. е. характер и последовательность составляющих его генетических горизонтов, специфично для каждого типа почвы и служит его основной диагностической характеристикой. При этом имеется в виду, что все горизонты в профиле взаимно связаны и обусловлены.

Почвенный горизонт, в свою очередь, также не является однородным и состоит из морфологических элементов третьего уровня - морфонов, под которыми понимаются внутригоризонтные морфологические элементы.

На четвертом уровне морфологической организации выделяются почвенные агрегаты, на которые естественно распадается почва в пределах генетических горизонтов.

Следующий, пятый уровень морфологической организации почвы можно обнаружить уже только с помощью микроскопа. Это микростроение почвы, изучаемое в рамках микроморфологии почв.

Основные факторы почвообразования. Почвообразовательный процесс протекает под влиянием внешних по отношению к почве природных условий – факторов почвообразования. Факторы почвообразования следует разделить на два типа: природные (естественные) и антропогенные (искусственные). Выделяют шесть природных факторов почвообразования: материнские, или почвообразующие горные породы; климат; рельеф; растения и живые организмы; время. Все природные факторы являются равнозначными. Каждый из них оказывает свое специфическое влияние на почвообразование и без участия какого-либо из них почвообразование невозможно. Горные породы , из которых формируется почва, называются почвообразующими, или материнскими. По условиям образования их подразделяют на три группы: магматические, метаморфические и осадочные. Магматические породы образуются при застывании силикатного расплава магмы внутри земной коры (интрузивные) или на ее поверхности (эффузивные). Эти породы имеют кристаллическое строение, плотное сложение (плотность 2,6-3,3 г/см 3) и поэтому их называют еще массивно-кристаллические. К широко распространенным представителям интрузивных пород относятся диориты, граниты, габбро, дуниты и др., к эффузивным - базальты, андезиты и др. Магматические породы состоят главным образом из соединений кремния, алюминия, железа, магния, кальция, калия и натрия. В зависимости от соотношений соединений кремния, калия и натрия - с одной стороны, и железа, кальция и магния - с другой, различают магматические породы кислые и основные. Кислые почвообразующие породы (граниты, липариты, пегматиты) имеют высокое содержание кремнезема (более 63% Si02). Они имеют светлую и буроватую окраску с хорошо выраженными кристаллами кварца, полевых шпатов, слюд. Почвы, образующиеся из кислых пород, содержат гравий, песчаные частицы разного размера и поэтому имеют рыхлое сложение, хорошо обеспечены калием, но у них, как правило, повышенная кислотность, недостаточное количество оснований и невысокое плодородие. Основные магматические породы (базальты, периодиты, дуниты, габбро) характеризуются низким содержанием Si02 (40-60%). Они имеют темную окраску в связи с повышенным содержанием темноцветных минералов. Почвы, формирующиеся на продуктах выветривания основных пород, отличаются щелочной и нейтральной реакцией, содержат много оснований, гумуса и обладают повышенным плодородием. Магматические породы составляют 95% общей массы пород, слагающих литосферу, но в качестве почвообразующих они занимают небольшие площади, главным образом в горных областях. Метаморфические горные породы. Метаморфические горные породы - вторичные массивнокристаллические породы, образовавшиеся в недрах Земли в результате перекристаллизации магматических и осадочных пород под действием высоких давлений и температур. К ним относятся гнейсы, мрамор, кварциты и др. Они состоят из минералов группы силикатов, алюмосиликатов, карбонатов. В качестве почвообразующих метаморфические горные породы занимают небольшие площади. Гнейсы по свойствам близки к гранитам. На продуктах выветривания сланцев и мрамора формируются почвы, обогащенные основаниями, с повышенным уровнем плодородия. Осадочные горные породы. Формирование осадочных горных пород обусловлено процессами выветривания магматических и метаморфических пород, переносом продуктов выветривания водными, ледниковыми и воздушными потоками и отложением на поверхности суши, на дне морей, океанов, озер, в поймах рек. По происхождению они подразделяются на морские и континентальные. По возрасту осадочные породы подразделяются на древние и четвертичные. Четвертичные отложения образовались в последние 1,5-2 млн лет и продолжают формироваться в настоящее время. Четвертичные осадочные породы характеризуются рыхлым сложением, невысокой плотностью, сложены частицами разного размера и разной степени окатанности: валуны, галечники, пески, суглинки и др. Элювий (вымываю). Элювием называют континентальные геологические образования, возникшие в результате сильного изменения и разрушения горных пород на месте их первичного залегания. К элювию относят продукты выветривания горных пород, сохраняющие реликтовые структурные и петрографические признаки, генетическую связь и непрерывность последовательности перехода к исходным породам. В щелочной среде возникает карбонатный элювий типа мергелей, лесса, лессовидных пород, засоленных грунтов и т. д. Нередко в верхних горизонтах элювий кислый, так как вода здесь обогащена углекислым газом, а книзу происходит нейтрализация углекислоты и нарастает щелочная реакция. В холодном климате наблюдается выраженное оглеение и ожелезнение – формирование мощных сизо-серых, вязких, глиноподобных масс и болотных охристо-желтых образований. В умеренном климате накапливаются красно- и желто-бурые глины и суглинки, а в условиях континентально-умеренного пояса при некоторой засушливости образуется карбонатный палево-желтый лессовидный элювий, иногда гипсоносный и обогащенный легкорастворимыми солями. Соли местами имеют тенденцию к накоплению в поверхностных горизонтах элювиальных толщ. Во влажном климате, наоборот, растворимые соли выщелачиваются и накапливается кремнезем. Делювий (смываю) – генетический тип континентальных отложений, образующихся на склонах в результате смыва и отложения разрушенных выветриванием горных пород. Делювиальные отложения – это разнообразные по цвету и механическому составу, обычно пористые, образования, обязанные происхождением деятельности переменных по силе, мощности времени действия струйчатых водных потоков, которые не имеют определенных русл, а развиваются на склонах и производят смыв и отложение осадков на склонной поверхности. По механическому составу делювий в основной массе представлен в большинстве случаев средними суглинками. Мощный песчаный делювий на широких склонах при относительно малом стоке воды не возникает, так как выпадающие осадки успевают фильтроваться в песчаные породы, не стекая по поверхности склона. Там, где идет разрушение твердых пород, в делювий поступает крупнообломочный материал в виде брекчии и щебня, часто слагающего целые горизонты в основании делювиальных толщ. Аллювий (от латинского alluvio – намываю) – генетический тип континентальных рыхлых слоистых песчано-глинистых речных, дельтовых, овражно-балочных и озерных отложений. Типичный, широко распространенный речной аллювий образуется в результате миграции водных потоков в пределах речных долин. Он дифференцируется на два яруса отложений: а) верхний – собственно пойменные, песчано-глинистые, относительно горизонта слоистые отложения с разнообразными ископаемыми почвами. Формируется в период разлива полых вод. В составе пойменных отложений закономерно залегает старичный аллювий; б) нижний – русловые песчано-галечниковые, часто косослоистые отложения с ориентированными гальками и валунами в основании; образуются в русле в условиях миграции потока; залегают в основании эрозионной выемки, на «плотике».Верхний и нижний ярусы генетически тесно связаны между собой, составляя единый аллювиальный комплекс, часто осложненный происходившими изменениями базисов эрозии в период формирования этого комплекса. У основания склонов коренных берегов речных долин формируются смешанные аллювиально-делювиальные отложения. Аллювий равнинных рек характеризуется хорошо выраженным полным аллювиальным комплексом отложений. В долинах горных рек доминирует русловый галечниковый аллювий. В овражно-балочных долинах с выраженным профилем равновесия преобладает пойменный аллювий. В дельтах рек формируется озерно-речной и пресноводно-морской аллювий. Различают новейший аллювий – массивов современных пойм и древний аллювий, слагающий речные террасы, сформированный в период их пойменной стадии. Генетически близки к аллювию флювиогляциальные отложения, образованные мощными потоками талых вод ледника. Аллювий служит материнской породой в поймах и надпойменных террасах. Пролювий (от латинского proluo – сношу) впервые выделен А.П. Павловым как особый генетический тип геологических отложений. Он возникает на склонах гор, в области конусов выноса и в устьевых частях горных оврагов в результате деятельности повторяющихся ливневых водотоков. Пролювий склонов и конусов выноса состоит из обломков горных пород разной крупности: от щебня, галечника и гравия до песчано-пылеватых и глинистых осадков включительно. По шлейфам склонов и периферии обширных конусов выноса образуются лессовидные и глинистые пролювиальные отложения. Пролювий горных склонов по генезису приближается к делювию, а отложения конусов выноса близко стоят к овражному аллювию. Поэтому правильнее считать первый разновидностью делювия, а второй – разновидностью аллювия. Почвообразующая порода является той основой, из которой формируется почва. Минеральная часть в подавляющем большинстве почв составляет 90 –95% почвенной массы. Выделяют две основные функции материнской горной породы в почвообразовании: формирование состава почвенных масс и подстилающей породы. Состав горных пород определяет химический, минералогический, гранулометрический состав будущих почв, например, наиболее богатые почвы формируются на карбонатных суглинках, а на песках они беднее, однако теплее и лучше аэрированы. Порода в значительной степени определяет и скорость почвообразования. Материнские породы на территории России большей частью представлены четвертичными осадочными смешанными горными породами. Климатический фактор определяет обеспеченность почвообразования влагой (атмосферные осадки) и энергией (солнечная радиация – свет и тепло). Климат на различных широтах земного шара различен. Различают арктический, субарктический, умеренный, субтропический и тропический климат. В соответствии с климатическими условиями различают и растительные зоны, отличающиеся количеством растительного органического вещества, и, соответственно, скоростью и продолжительностью биологического круговорота и тип процесса почвообразования. Благоприятные для жизни гидротермические условия обеспечивают протекание в почве процессов, влияют на сообщества растительных и животных организмов, увеличивая их продуктивность, что в конечном итоге влияет на интенсивность почвообразования. Известно, что при повышении температуры на 10 о С скорость химических реакций увеличивается в 2–4 раза (правило Вант-Гоффа. Водный режим географических поясов определяют по отношению среднегодовой суммы осадков к годовой испаряемости – так называемый коэффициент увлажнения (КУ) Г.Н. Высоцкого-Н.Н. Иванова. Он является наиболее объективным показателем атмосферного увлажнения. При КУ >1 увлажнение избыточное (наблюдается в высоких широтах – примерно к северу и к югу от 50-й параллели), а при КУ<1 – недостаточное увлажнение (например, в пустынях КУ практически приближается к нулю). Рельеф определяется характером чередования пониженных и повышенных участков суши. Различают три вида рельефа: микрорельеф (колебания высот до нескольких метров); мезорельеф (колебания высот до нескольких десятков метров); макрорельеф (колебания высот от нескольких десятков до нескольких сот метров). Влияние рельефа связано с количеством поступающего на поверхность почвы света, тепла и влаги. На степень освещения и нагрева почв влияет угол уклона рельефа, экспозиция уклона, крутизна (на южном склоне больше тепла, чем на северном). Рельеф перераспределяет полученную из атмосферы воду. Больше всего воды поступает в низинную часть рельефа. Все поднятия на земле – положительные элементы рельефа, на них меньше всего влаги. Обычно сверху находится грубая механическая порода (валуны, камень, гравий), снизу более мелкий и тонкий механический состав (суглинки, лёсы). Положительные элементы рельефа не участвуют в процессах почвообразования путём грунтовых вод, а отрицательные участвуют. Рельеф оказывает влияние на климатические условия, а соответственно на жизнь растений, животных, микроорганизмов, на перераспределение тепла и влаги, что сказывается на процессах почвообразования в целом. Кроме этого рельеф обусловливает перемещение почвенных масс по склону в результате эрозионных и аккумулятивных процессов. Функциирастительных и живых организмов в почвообразовании весьма разнообразны. Почвообразование является биогенным процессом, и оно начинается с момента появления растений и живых организмов на массивно-кристаллических или осадочных породах. Растительные и живые организмы являются единственным источником органического вещества, которое служит материалом для образования почвенного гумуса. Другая важная функция организмов базируется на способности живого вещества к избирательному поглощению элементов из почв. Благодаря этому свойству организмы в существенной степени определяют химический состав почв. Зеленые низшие и высшие растения используют в процессе роста радиационную энергию Солнца, вовлекая в биологический круговорот огромное количество химических элементов, ежегодно формируя около 233 млрд. т органического вещества на поверхности и внутри почвы. Корни растений чисто механически разрыхляют почву, увеличивая водо- и воздухопроницаемость пород, изменяют своими выделениями свойства материнских пород, что способствует развитию микроорганизмов. Микроорганизмы за счет выделяемых ими ферментов разлагают органические вещества и образуют органоминеральные соединения – гумус. По данным Е.Н. Мишустина (1987) количество микроорганизмов колеблется от нескольких сотен в 1 г дерново-подзолистых почв до 3 миллиардов в черноземных почвах. Масса микроорганизмов может составлять от 3 до 8 т/га в черноземных почвах. Грибы разлагают клетчатку, лигнин и другие органические вещества почвы и также способствуют образованию гумуса. Дождевые черви (живут на глубинах до 12 м), проделывая ходы в почве, рыхлят и аэрируют ее, что способствует развитию корневой системы растений, кроме того, перерабатывая органические остатки, образуют гумус. За один год черви, живущие на 1 га способны переработать до 100 т органических остатков и перемешать ~120 т земли. Насекомые и животные также активно разрушают органическое вещество, минерализуют его и, тем самым, выступают посредниками в обмене между почвой, атмосферой, обеспечивая круговорот элементов питания. Время развития зрелого почвенного профиля для разных условий – от нескольких сотен до нескольких тысяч лет. (Согласно данным, Л. Александровского увеличение мощности гумусового горизонта до 15 см происходит приблизительно за 100 лет). Возраст территории вообще и почвы в частности, а также изменения условий почвообразования в процессе их эволюции оказывают существенное влияние на строение, свойства и состав почвы. При сходных географических условиях почвообразования почвы, имеющие неодинаковые возраст и историю, могут существенно различаться и принадлежать к разным классификационным группам. Итак, можно констатировать, что все естественные факторы почвообразования взаимосвязаны и действуют одновременно, оказывая влияние не только на интенсивность биологического круговорота и почвообразования, но и друг на друга. Так, изменение микроклиматических условий может вызвать смену растительного покрова и почв. Почвы в свою очередь могут оказать воздействие на смену растительности и изменить микроклиматическую обстановку. Антропогенные (искусственные) факторы . Влияние хозяйственной деятельности человека на почвообразование проявляется в регулировании состава и характера растительности, изменении свойств самих почв и процессов, протекающих в них. На огромных лесных и сельскохозяйственных территориях производят механизированную обработку почв, при которой уничтожается естественная растительность, эксплуатируются леса, проводятся мелиоративные работы, вносятся органические, бактериальные и минеральные удобрения. Происходит изменение естественных физических и химических свойств почв, приостанавливаются нежелательные для человека направления процессов почвообразования, изменяются биологические свойства. При увеличении, например, содержания кальция (известковании) в почве становится больше органического вещества, меняется реакция среды, возрастает количество микроорганизмов и элементов питания; в результате повышается плодородие почвы. Осушение приостанавливает болотный процесс, а орошение в засушливых районах создает условия для накопления органического вещества в почвах, повышая плодородие почв и урожай растений. В результате хозяйственной деятельности человека изменяются характер и интенсивность биологического круговорота веществ, почвы дополнительно получают органическое вещество и элементы питания, формируется мощный пахотный горизонт, создаются окультуренные почвы с повышенным плодородием. Различной хозяйственной деятельностью охвачено 500 млн. га земель. Однако применение неправильных приемов ведения хозяйства вызывает развитие неблагоприятных почвообразовательных процессов: заболачивания, засоления, разрушения органического вещества и потери элементов питания.

3. Климат как фактор почвообразования. Климат, его роль в почвообразовании. Климат формируется под влиянием космических факторов (энергия Солнца) и геосферных (влияние земной поверхности на формирование воздушных масс). Он оказывает многостороннее влияние на биосферу, процессы почвообразования, свойства почв и почвенного покрова. Влияние климата на почвообразование проявляется как непосредственно, обусловливая водно-воздушный, тепловой, биологический, геохимический режимы почв, так и косвенно через другие компоненты биосферы: атмосферу, гидросферу, почвообразующие породы, рельеф, растительный, животный мир и хозяйственную деятельность человека. Все перечисленные компоненты биосферы зависят от тепловой энергии Солнца и условий увлажнения. С климатом связана широтная зональность биосферы (выветривание, денудация и др.), в том числе почвенных процессов (гумусонакопление, оподзоливание и др.) и вертикальная поясность в горах. Главными показателями климата являются тепло- и влагообеспеченность территорий. Температурный режим почв следует за температурным режимом приземного слоя атмосферы, но отстает от него. Среднегодовые температуры воздуха и почвы в пределах территории России возрастают с севера на юг и с востока на запад. Среднегодовая температура почвы на глубине 20 см изменяется в пределах России от -12 до + lб·с. Область отрицательных среднегодовых температур совпадает с областью распространения многолетней мерзлоты. В качестве критерия выделения термических групп климатов (термических поясов) принята сумма среднесуточных температур более to c. Для каждого термического пояса характерны определенные типы растительности и почв, поэтому в системе почвенно-географического районирования их называют почвенно-биоклиматическими поясами. В пределах почвенно-биоклиматических поясов существуют значительные различия по условиям увлажнения и степени континентальности климата, оказывающие большое влияние на дифференциацию типов растений и почв. В связи с этим выделяют почвенно-биоклиматические области по влагообеспеченности и степени континентальности климата. Для характеристики обеспеченности влагой используются гидротермические коэффициенты, рассчитываемые по отношению осадков к испаряемости. Наибольшее распространение получил коэффициент увлажнения (КУ), предложенный Г.Н.Высоцким (1904) и разработанный для географических зон Н.Н.Ивановым (1948), известный под названием "коэффициент Высоцкого Иванова". Он рассчитывается как отношение среднемноголетнего количества осадков за год к испаряемости, определенной с поверхности водоемов. В соответствии с водообеспеченностью вьщеляются группы климатов или почвенно-биоклиматические области.В основу разделения климата по степени континентальности положена годовая амплитуда температур. Коэффициент континентальности вычисляется по формуле, предложенной Н.Н.Ивановым: К= А · 100/0,33 М, где А - годовая амплитуда температуры из среднемесячных ее величин, М- широта местности. Для океанических областей степень континентальности (величина К) - менее 100%, для слабоумеренных и среднеконтинентальных- 100-250 и резкоконтинентальных-более 250%. При агроклиматическом районировании (Д.И.Шашко,1967) кроме обеспеченности теплом, влагой и континентальности климата используются следующие показатели: продолжительность периода вегетации с t > 10°С; суровость зимы, определяемая средней температурой самого холодного месяца; снежность зимы, характеризуемая высотой снежного покрова. Большое влияние на местные условия почвообразования оказывают микроклиматические условия, которые зависят от рельефа, растительного покрова, наличия водоемов и других биосферных факторов. Их необходимо учитывать при формировании адаптивно-ландшафтных систем земледелия. Например, почвы на склонах разной экспозиции, получающие разное количество тепла, имеют разную степень смытости, степень оглеения, мощность гумусового слоя и др. Климат влияет на эффективность земледелия, величину урожая как опосредованно, через свойства и плодородие почв, так и прямо, обусловливая оптимальные условия температуры и влажности атмосферы, освещенность, величину снежного покрова и др. Поэтому с климатическими условиями связан и набор культур, способных давать урожай при данных климатических условиях, и величина урожая. Даже на почвах одного и того же типа, например, черноземах выщелоченных, но в разных климатических условиях (Европейская часть России, Западная Сибирь, Восточная Сибирь) набор культур и максимальная величина урожая прежде всего определяются климатическими условиями. Из этого следует, что культурные растения в значительно большей степени реагируют на изменение климатических условий, по сравнению с почвами. Поэтому оценка плодородия почв должна проводиться в системе оценки ландшафтов, с обязательным учетом климатических условий и положения в рельефе.

4. Порода, как фактор почвообразования. Почвообразующие породы. Значение почвообразующей, или материнской, породы как фактора почвообразования заключается в том, что она является тем исходным материалом, из которого формируются почвы, и той средой, где проявляется деятельность живых организмов. Однако почвообразующая порода не есть инертный скелет почвы. Она принимает прямое участие в развивающихся на ней процессах, обусловливая гранулометрический, минералогический и химический состав почв и влияя тем самым на физические, физико-химические, водно-воздушные свойства, тепловой, питательный и водный режимы почвы. Все эти свойства непосредственно влияют на скорость, направленность и характер почвообразовательных процессов: минерализацию и гумификацию растительных остатков, скорость накопления и передвижения веществ в почвенной толще, а также на формирование и уровень почвенного плодородия. В одних и тех же природных условиях, но на различных почвообразующих породах могут формироваться совершенно разные почвы. Так, например, в таежно-лесной зоне на алюмосиликатной морене формируются малоплодородные, подзолистые почвы, а на карбонатной морене – плодородные почвы с высоким содержанием гумуса, агрономически ценной структурой и благоприятной нейтральной реакцией. В этой же зоне на флювиогляциальных песках формируются бедные и сухие песчаные почвы, а на аллювии – пойменные дерновые, плодородные почвы. По происхождению горные породы подразделяются на три группы: 1) магматические , образующиеся при внедрении в земную кору или извержении на поверхность магмы (основные – базальт, габбро; кислые – гранит; ультраосновные – перидонит, дунит); 2) осадочные горные породы, образующиеся путем механического или химического осаждения продуктов разрушения магматических и метаморфических пород, а также жизнедеятельности организмов; 3) метаморфические породы, образующиеся из ранее существовавших пород под воздействием факторов метаморфизма (высоких температур, давления, действия газов). Наиболее распространены сланцы, филлиты, гнейсы, кварциты, мраморы. На большей части Земли почвы сформировались на осадочных породах. Они покрывают около 75 %поверхности континентов. По генетическим признакам среди осадочных горных пород выделяют : обломочные, или механические, химические и органогенные. Механические (обломочные) , отложения образовались при механическом измельчении (дроблении) различных горных пород под влиянием термического выветривания, а также разрушения их ледниками и снеговыми водами. Элювий – продукты выветривания, остающиеся на месте их образования. Этот материал состоит из обломков разного размера. В условиях горного рельефа элювий встречается на повышениях. Почвы, образующиеся на элювиальных отложениях, характеризуются низким плодородием, малой мощностью, а также щебнистостью и каменистостью. Делювий – это рыхлые продукты выветривания, переносимые временными незначительными водными потоками, стекающими вниз по склонам во время дождей и весеннего снеготаяния. Этот мелкозёмистый материал откладывается у основания и в нижней части склонов. На делювиальных отложениях формируются почвы довольно высокого плодородия. Аллювий – отложения речных постоянных водных потоков. Эти отложения формируются в долинах рек во время паводков, характеризуются слоистостью и сортированностью. Могут быть разные по содержанию частиц – песчаные в околоречной части поймы и илистые в притеррасной части. Озерные отложения – сапропель, озерные илы, мергель. Для них характерны глинистый, реже тонкопесчаный состав со значительным количеством ила, карбонатов или легкорастворимых солей. Формируются довольно плодородные почвы. Болотные отложения состоят из торфа и болотногo ила. Морские отложения встречаются в Прикаспийской низменности, на побережье северных морей. Эти породы сортированы, разного гранулометрического состава, слоисты и содержат соли. На морских отложениях образуются засоленные почвы. Эоловые отложения образуются при переносе и отложении песчаного материала ветром. Песчаные наносы занимают большие территории в пустынях. Образуют такие формы рельефа, как дюны, барханы, бугры. На обширных равнинах в основном распространены отложения четвертичного периода – ледниковые отложения , продукты выветривания различных пород, перемещенные и отложенные ледником. Они преобладают и в составе почвообразующих пород Беларуси и делятся на моренные, водно-ледниковые, озерно-ледниковые. Для морены характерны несортированность, неоднородный механический состав, завалуненность, обогащенность первичными минералами, красно-бурая, желто-бурая окраски. Водно-ледниковые отложения связаны с перемещением и переотложением моренного материала ледниковыми потоками за краем ледника. Характеризуются сортированностью, ровным рельефом, безвалунностью, бедны по химическому составу, преимущественно песчаные. Озерно-ледниковые являются отложениями мелководных приледниковых озер. Характерно большое содержание пылеватых фракций, безвалунность, богатство химического состава, суглинки и супеси по механическому составу, часто карбонатные, уплотненные, склонны к заболачиванию. Лёссовидные суглинки и лёсс имеют различный генезис. Для них характерны палевая или буровато-палевая окраски, карбонатность, рыхлое сложение, они богаты по химическому составу, чаще легкие суглинки, склонны к размыванию и образованию оврагов. Химические осадочные породы возникают путем отложения вещества на дне водоемов из растворов в результате химических реакций или изменения температуры воды. Карбонатные породы образуются на дне морей частично при осаждении из воды углекислой кальциевой соли, поступающей вместе с речной водой. Большая же часть углекислого кальция, осевшего на морском дне, является продуктом деятельности некоторых организмов. Так, в меловом периоде мезозойской эры происходило накопление залежей мела за счет микроскопических раковинных амеб (фораминифер и др.). Органогенные породы состоят из продуктов жизнедеятельности животных и растений, а также из их неразложившихся остатков (торф). Многие карбонатные породы (известняки коралловые, ракушечные и др.) образуются с участием организмов, в скелетной или защитной части которых содержится карбонат кальция. При оценке почв все материнские породы делят (рис. 2) на засоленные и незасоленные . Засоленными породами являются отложения давно высохших морских бассейнов или озер, на них могут развиваться засоленные почвы (солончаки, солонцы). На карбонатных породах развиваются почвы с нейтральной реакцией среды, способствующей накоплению гумуса в почве (дерново-карбонатные и др.). Наиболее ценные почвообразующие породы – лёссы, лёссовидные суглинки и другие карбонатные породы (ледниковые и озерные отложения), а также аллювиальные суглинки в поймах рек. К менее ценным относятся бескарбонатные покровные суглинки, а к самым бедным – кварцевые пески (эоловые отложения).

Исходя из особенностей материнской породы, П.С.Косович (1911) сделал два вывода: 1. На одних и тех же породах могут формироваться разные почвы, если другие факторы почвообразования отличаются между собой. На суглинистой породе под травянистой растительностью формируется дерновая почва, под лесом – дерново-подзолистая или иная лесная почва. 2. Одни и те же почвы могут формироваться на разных породах, если иные факторы почвообразования одинаковы. Под смешанным хвойно-лиственным лесом на песчаных, супесчаных, суглинистых породах образуются дерново-подзолистые почвы. Однако возможны исключения: чем активнее идет процесс почвообразования, тем слабее влияет горная порода, но в случае, если химический состав и физические свойства породы выражены резко (карбонатная порода), она оказывает длительное влияние. Климат – многолетний режим погоды той или иной местности. В различных природных условиях климат подчиняется закону зональности. Он зависит от географической широты, высоты над уровнем моря, форм рельефа и удаленности от морей и океанов. Сильнее всего на почвообразование влияют температура, атмосферные осадки, ветер и влажность воздуха. Эти элементы в сочетании с другими факторами почвообразования обусловливают определенную закономерность в распространении почвенного покрова. С климатом связано обеспечение почвы энергией – теплом и в значительной мере водой. От величины годового количества поступающего тепла и влаги, особенностей их суточного и сезонного распределения зависят активность биологических процессов и развитие почвообразовательного процесса. Большое значение имеет характеристика климата по температурным показателям и условиям увлажнения. Выделяются следующие климатические группировки по показателям суммы температур выше 10 о С за вегетационный период: холодные полярные < 600 о, холодно-умеренные – 600 – 2000 о, тепло-умеренные – 2000 – 3800 о, теплые субтропические – 3800 – 8000 о, жаркие тропические > 8000 о . Эти группы климата располагаются в виде широтных поясов и называются почвенно-биотермическими поясами, которые характеризуется определенными типами растительности и почв. По условиям увлажнения выделяются климатические группировки: очень влажные– коэффициент увлажнения > 1,33, влажные гумидные – 1,00 – 1,33, полувлажные – 0,55 – 1,00, полусухие – 0,33 – 0,55, сухие аридные – 0,12 – 0,33, очень сухие – < 0,12. Коэффициент увлажнения (ГТК) – это отношение количества осадков к испаряемости. Обилие осадков способствует промыванию почвы и выносу в нижние горизонты легкорастворимых солей, в том числе и минеральных веществ, образующихся при разложении органических остатков. При засушливом климате эти соединения не только не выносятся, но, наоборот, способны накапливаться в верхних слоях почвы, приводя к её засолению. Климат оказывает прямое и косвенное влияние на характер почвообразовательного процесса. Прямое влияние связано с непосредственным воздействием на почву осадков, нагревания и охлаждения. Косвенное влияние климата проявляется через воздействие на растительность и животный мир. Таким образом, климат сильно влияет на тепловой, воздушный и другие режимы почв. От сочетания температурных условий и увлажнения зависят тип растительности и состав фитоценозов, скорость образования и трансформации органического вещества, скорость ферментативных реакций, метаболическая и функциональная активность микробиоты, растений и животных, процессы ветровой и водной эрозии.

6. Роль органических веществ в почвообразовании, плодородии, питании растений . Роль органических веществ в почвообразовании, плодородии почв и питании растений очень многообразна. Значительная часть элементарных почвенных процессов (ЭПП) происходит с участием гумусовых веществ. К ним относятся биогенно-аккумулятивные, элювиальные, элювиально-аккумулятивные, метаморфические и другие. Процессы взаимодействия органических веществ с минеральной частью почв лежат в основе почвообразования. Содержание, запасы и состав гумуса входят в состав главных показателей почвенного плодородия. Они оказывают также влияние на все режимы и свойства почв. Органическое вещество является источником азота и зольных элементов питания растений. В нем содержится 98% валового азота, с ним связано 40-60% фосфора, 80-90% серы, значительные количества кальция, магния, калия и других макро- и микроэлементов. Часть этих элементов находится в поглощенном состоянии и усваивается растениями в результате ионообменных реакций. Другая часть высвобождается и становится доступной растения после минерализации органических веществ. Установлено, что около 50% потребности в азоте культурные растения получают за счет почвенного органического вещества, прежде всего легкоразлагаемого, остальные 50% за счет минеральных удобрений. Органическое вещество оптимизирует физико-химические свойства почв. Поглотительная способность органических коллоидов значительно выше, чем минеральных, и достигает 1000 и более мг-экв./100 г препарата гумусовых веществ. Более гумусированные почвы обладают более высокой буферностью по отношению к кислотно-основным воздействиям, окислению-восстановлению и действию токсикантов. Поглощенные органическими и органо-минеральными коллоидами катионы являются доступными для растений и активно участвуют в их питании. Органическое вещество оказывает существенное влияние на структурное состояние, физические, водно-физические и физико-механические свойства почв. С увеличением гумусированности снижается плотность, увеличивается общая порозность, улучшается структура почвы, повышается водопрочность структурных агрегатов; увеличивается влагоемкость и водоудерживающая способность, водопроницаемость, диапазон активной влаги, гигроскопическая влажность; становятся оптимальными физико-механические свойства почвы: липкость, пластичность, твердость, удельное сопротивление. Гумус придает почве темную окраску, что способствует поглощению тепла. Органическое вещество играет ведущую роль в биологическом режиме почв. Источники гумуса поддерживают в почвах определенный уровень биологической активности; собственно гумусовые вещества способствуют сохранению микроорганизмов в почвах и создают комфортные условия для их функционирования. Повышенная биологическая активность почв способствует снижению численности патогенных микроорганизмов, ускоряет микробиологическую деградацию пестицидов. В составе органических веществ содержатся физиологически активные вещества, ускоряющие рост и развитие растений. Наряду с минеральными питательными веществами большое значение имеют органические вещества почвы, продукты гумификации и неполного разложения растительных и животных остатков. Преобладающее значение при этом имеют продукты переработки остатков зеленых высших фотосинтезирующих растений (продуцентов). Продуценты при отмирании или при - переработке цепью консументов обогащают почву органическим веществом. Опад надземных отмирающих частей накапливается на поверхности почвы в виде -слоя подстилки, ветоши и т. п. Количество образующейся за год подстилки различно в разных типах растительности, в разных зонах. Так, среднее количество подстилки, по данным Лархе-ipa (1978), составляет (т/га): в тропических злаковни-ках - 10-15; на лугах умеренной зоны - 6-10; в лесах - 5-9; в степях - 1-5; в тундре- 0,05-0,5; в пустынях - 0,01-0,05. Образующаяся подстилка с большей или меньшей скоростью разлагается, и поэтому ее запас зависит не только от количества опада, но и от скорости разложения, которая во многом определяется характером и составом подстилки, типом -почвы, ее фауной и особенно климатическими условиями. Бели опад сильно лигнифицирован и богат дубильными веществами, то он разлагается гораздо медленнее, чем опад лиственных пород. Годичный опад дождевого тропического леса, в силу специфических климатических условий и большой активности почвенных организмов, может разложиться в течение 1-2 лет, в лиственных лесах умеренной зоны - за 2-4 года, в хвойном лесу - за 4-5 лет, достаточно быстро (разложение идет в степной зоне, в тундре же оно может длиться десятки лет. В степной зоне скорость разложения ускоряется весной и летом (до периода засухи) и замедляется к зиме. В разложении подстилки принимают участие многочисленные животные организмы почвы, для которых опад служит пищей, и в первую очередь сапррофаги. В процессе переваривания все эти организмы выделяют экскременты, которые смешиваются с еще не съеденными растительными остатками. На богатых почвах широколиственных лесов в работу вступают дождевые черви, вырабатывая полностью переваренное вещество, включаемое в состав почвы, - мягкий гумус (муль). В лесной подстилке на кислых почвах хвойных лесов переработка растительного опада ведется главным образом грибами; при этом образуется грубый микоген-ный гумус (мор), пронизанный мелкими корнями высших растений, а также микоризой. Между мулем и грубым гумусом - мором иногда выделяют еще промежуточный тип - модер. Так происходит изменение органических остатков от первоначальных слагаемых подстилки до гумуса. Для образования гумуса не менее важна масса отмирающих корней. По массе корней, пронизывающих почву, на первом месте стоят широколиственные леса и луговые степи, на следующем - влажные тропические и субтропические леса и на последнем - пустыни. Относительная доля корневой фитомассы (от общей доли фитомассы) в лесах не очень велика - всего 20- 25%. Наиболее высоки относительная ма-сса корней и запас гумуса под травяной степной растительностью, что связано с большим количеством тонких, легко разлагающихся корней травянистых растений. Этот гумус обусловливает высокое плодородие степных черноземных почв. Таким образом, в формировании плодородия почвы основную роль играют конечные продукты гумификации, т. е. гумусовые вещества (гуминовые и подвижные фульвокислоты). Однако накопление в составе гумуса запасов питательных веществ означает одновременно и их иммобилизацию, поскольку они переходят в малодоступную форму. Кроме питательных веществ гумус содержит (И физиологически активные.компоненты; некоторые из них могут вызывать не только стимулирующее влияние, но иногда оказывают ингибирующее или даже токсическое воздействие. Гумус улучшает структуру почвы, ее физические свойства. Степень гумификации, т. е. степень переработанности исходных веществ, зависит от объема ежегодно поступающих в почву растительных остатков, от интенсивности их переработки и времени воздействия на них самой почвы в течение вегетационного периода. Величина степени гумификации достигает наиболее высоких значений в почвах черноземного типа и уменьшается как к северу (к подзолистым и тундровым почвам), так и к югу (к каштановым почвам и сероземам). В таком же порядке меняются общее содержание и запасы гумуса в почве и его состав. Интересно, что состав и свойства гумуса -не совпадают с отдельными климатическими показателями (осадки, радиационный баланс), но для почв умеренного климата хорошо коррелируют с уровнем биологической активности (Бирюкова, Орлов, 1978). Период биологической активности (т. е. период нормальной вегетации растительности и активной микробиологической деятельности) определяется в этом случае как время, когда температура воздуха устойчиво превышает 10°, а запас продуктивной влаги в почве составляет не менее 1-2%. Зависимость гумусообразования от температуры объясняет, почему почвы тропической зоны очень бедны гумусом. Здесь идет мощный процесс переработки остатков - при высоких температурах и влажности очень активны сапротрофы. В тундре растительные остатки почти не разлагаются, не минерализуются; при низких температурах очень мала активность салротрофов. В степной зоне, где много тонких корней трав и опада надземных частей, которые довольно медленно минерализуются, почва на большую глубину приобретает темную окраску. Масса гумуса здесь намного превышает фитомассу одной генерации растений и образуется чернозем - одна из плодороднейших почв. В лесной почве древесные корни живут дольше, чем корни трав, запасы органического вещества в почве леса меньше, чем в степи. Лесные почвы беднее гумусом, но часто имеют хорошо выраженный особый горизонт органических веществ, лежащий почти на поверхности, непосредственно под подстилкой. Наконец, в сырых заболоченных местах, где степень.разложения очень низка из-за малой активности сапротрофов, формируются различные типы торфов. В ненарушенных фитоценозах устанавливается определенное равновесие между запасом подстилки, количеством органического вещества в почве и фигомассой, и такое равновесие весьма важно, поскольку содержащиеся в опаде резервные питательные вещества остаются в распоряжении всей данной экосистемы и образующиеся при минерализации питательные элементы постепенно потребляются зелеными растениями. Отчуждение фитомассы или удаление опада ведет к обеднению почвы питательными элементами. Если минерализация органического вещества почвы происходит быстро (например в тропическом лесу), то минеральные элементы очень скоро высвобождаются и становятся доступными зеленым растениям, что обусловливает создание большой фитомассы (хотя при этом надо учитывать и повышенную возможность вымывания минеральных веществ из почвы). Таким образом, сложный цикл превращения органических веществ (опад → гумификация →минерализация → возврат в растение) постоянно поддерживает достаточное содержание биологически важных элементов, а плодородие почвы во многом зависит от скорости возврата отнятых у нее элементов. Некоторые элементы теряются, уходя в атмосферу или с дренирующими водами через сток. Но продолжающееся выветривание, фиксация азота, отложение пыли - все это восстанавливает часть утраченных элементов. Вообще зеленые растения отдают почве больше, чем берут от нее. Они изымают сравнительно малое количество растворенных веществ, а возвращают большую массу органических веществ: целлюлозу, лигнин, крахмал, сахара, жиры, протеины и т. д. Это позволяет развиваться в почве многим животным, а также тем организмам, которые питаются этими животными.

7.Рельеф, его роль в почвообразовании. Рельеф - это совокупность форм земной поверхности разных масштабов. Наука о рельефе, его строении и происхождения - геоморфология. В зависимости от размеров форм земной поверхности различают мегарельеф, макрорельеф, мезорельеф и микрорельеф. Мегарельеф - это наиболее крупные неровности земной поверхности - материковые массивы и океанские впадины. Макрорельеф - крупные формы земной поверхности, занимающие большую плошадь, с колебаниями высот, измеряемыми сотнями метров и километрами (горные хребты, плоскогорья, равнины). Мезорельеф - формы рельефа средних размеров с колебаниями высот, измеряемыми метрами и десятками метров (склоны, ложбины, балки, террасы и др.). Микрорельеф- мелкие формы рельефа, занимающие незначительные площади, с колебаниями высот в пределах одного метра (западины, блюдца, бугорки и др.). Разновидностью микрорельефа является нанорельеф - самые мелкие формы рельефа с колебаниями высот в пределах 30 см: кочки, неровности, связанные с обработкой почвы (борозды, гребни и др.). Рельеф создается в результате одновременного воздействия на земную поверхность эндогенных (тектонических) и экзогенных сил, возбуждающих деятельность денудационных процессов: текущей воды, ветра, льда и др., гравитационных сил и пр. Те и другие силы действуют антагонистически. Эндогенные – создают крупные неровности, экзогенные- разрушают и понижают положительные формы рельефа и заполняют продуктами разрушения отрицательные формы. Рельеф играет большую роль в процессах функционирования биосферы и в почвообразовании. Мега- и макроформы рельефа (материки, океаны, горные системы) участвуют в формировании воздушных масс и перераспределении тепла и влаги по земной поверхности, определяя климатические и погодные условия, а через них - макроэкосистемы с характерным почвенным покровом. Наглядным примерам этого является вертикальная поясность в горах. Мезо- и микроформы рельефа перераспределяют тепло и влагу в пределах склонов, повышений и понижений. Они определяют особенности микроклимата и глубину залегания грунтовых вод, тем самым формируя мезо- и микроэкосистемы с характерными особенностями почвенного покрова. Мезо- и микрорельеф определяют размер и форму элементарных почвенных ареалов, образующих различные почвенные комбинации (сочетания, комплексы и др.) в структуре почвенного покрова. Большое влияние рельеф оказывает на формирование агроэкосистем и хозяйственную деятельность человека. В качестве примеров можно привести земледелие горное и на равнинах, противоэрозионные системы земледелия на склонах. В последние годы разрабатываются адаптивно-ландшафтные системы земледелия, в которых рельеф является одним из ведущих факторов выбора культуры и технологий их выращивания. С перераспределением влаги по элементам рельефа связана миграция твердых веществ с поверхностным стоком и растворенных - с поверхностным и внутрипочвенным стоком. Эти процессы обусловливают геохимические особенности ландшафтов, интенсивность процессов денудации и антропогенной эрозии. Типы рельефа и их распространение .С учетом внешнего вида (морфологии) и происхождения (генезиса) выделяются следующие морфагенетические типы рельефа (по К.К.Маркову): 1) горный (структурно-тектонический); 2) структурный (пластовый); 3) скульптурный (эрозионный); 4) аккумулятивный (насыпной). Горный, ши структурпо-тектопический тип рельефа подразделяется на несколько подтипов. Высокогорный рельеф характеризуется самой высокой амплитудой колебаний высот и самыми высокими абсолютными высотами, значительной крутизной склонов с острыми вершинами, лишенными растительности. Рыхлые отложения здесь не накапливаются, и формируются слаборазвитые маломощные почвы. Этот тип рельефа характерен для горных систем Кавказа, Памира, Алтая и др. Альпийский рельеф имеет черты высокогорного, но со значительным участием рыхлых ледниковых отложений в нишеобразных понижениях на склонах и в долинах, на которых широко распространены альпийские луга, используемые под пастбища. Альпийский рельеф распространен в ropax Кавказа, Памира, ТяньШаня, встречается в более низких горных системах на Урале и в горах Сибири. Нагорья представляют собой высокогорные выровненные поверхности со значительной мощностью рыхлых отложений и сформированными почвами. Распространены в Закавказье, Васза очном Памире, Алтае, Саянах, Становом хребте, горах северо: осточной Сибири. Здесь широко распространены альпийские дуга и местами развито высокогорное земледелие. Среднегорный рельеф характеризуется более низкими абсоюотными высотами с амплитудой относительных колебаний высот от 0,5 до 2 км. Склоны менее крутые, поэтому покрыты щебнистым материалом и, как правило, находятся под лесами. Распространены практически во всех горных системах России. Низкогорный рельеф характеризуется низкими абсолютными отметками и амплитудой относительных колебаний менее 0,5 км. Распространен этот тип по окраинам высоких и среднегорных систем. Селыовый рельеф характеризуется амплитудой относительных колебаний в пределах 100-200 м. Межгрядовые долины заполнены ледниковыми отложениями. Встречается в Карелии и на Кольском полуострове. Структурный, или пластовый тип рельефа представлен плоскими, горизонтально залегающими пластами осадочных пород, устойчивыми к процессам денудации. В этом типе рельефа также выделяется несколько подтипов. Плоскогорья высотой до 1 км, наибольшее распространение имеют в Средней Сибири. Плато имеют высоту до 400 м. Распространены на северо-западе и востоке Европейской части России. Куэсты - узкие плато, имеющие наклон в одну сторону. Распространены в Крыму и на Северном Кавказе. Скульптурный, или эрозионный тип рельефа представлен равнинами, которые образавались в результате речной и плоскостной эрозии, морской абразии. Они имеют разную степень расчленения. Мощность четвертичных отложений более высокая в нижних частях склонов и в понижениях. Эрозионный тип рельефа характерен- для Среднерусской, окраинных частей Океко-Донской и Среднеднепровской возвышенностей и Западно-Сибирской низменности. Аккумулятивный, или насыпной тип рельефа характеризуется накоплением рыхлых четвертичных отложений в областях погружения. Он включает несколько подтипов. Аллювиальные равнины- это слабо поиижеиные плоскохолмистые и плосковолнистые территории, охватывающие значительные части бассейнов крупных рек и их притоков. Они имеют мощную толщу четвертичных отложений, до нескольких десятков метров, представленных современными и древнеаллювиальными nесчаными и суглинистыми отложениями. Аллювиальные равнины слабо расчленены, часто заболочены. К аллювиальным равнинам относится Ярославско-Костромская, Марийская. Огромная озерно-аллювиальная равнина расположена на юге Западной Сибири в бассейнах рек Иртыша и Тобола. Ледниковый и водно-ледниковый аккумулятивный рельеф представлен холмистыми, холмисто-увалистыми равнинами, сложенными маренными и водно-ледниковыми отложениями. Такой рельеф занимает большие площади на северо-западе и севере европейской части России и на севере Западно-Сибирской низменности. Они представлены зандровыми равнинами в ВИде плоских конусов выноса подледниковых потоков и специфических маренных образований в виде холмов и валов высотой 20-25 м, получивших название озы, камы, друмлины. Морской аккумулятивный рельеф представлен плоскими и плоско-волнистыми формами на побережье Северного Ледовитого океана и в Прикаспийской низменности. Они сложены морскими отложениями. Эоловый аккумулятивный рельеф имеет наибольшее распространение в песчаных пустынях Средней Азии, а также на побережьях морей и озер. Для них характерны такие формы как барханы, бугристые и грядовые пески. Приморские, приозерные и приречные

8.Виды воды в почвах (водные свойства). Вода играет огромную роль в жизни Земли – без нее нет жизни. Вода обладает большой подвижностью, передвигается даже в твердом состоянии. В жидком состоянии вода двигается под действием силы тяжести, в парообразном – за счет диффузии и пассивно с воздухом. Благодаря большой подвижности и способности переносить различные вещества вода играет большую роль в обмене веществ. Воды как поверхностные так и грунтовые, играют огромную роль в процессах почвообразования. Эта роль заключается в первую очередь в формировании окислительно-восстановительного режима почвы. При глубоком залегании грунтовых вод и отсутствии застоя поверхностных вод в почвенном профиле создаются аэробные условия и протекают окислительные явления, которые сопровождаются интенсивной минерализацией органического вещества. В таких условиях формируются автоморфные почвы, не имеющие признаков заболачивания. Автоморфные почвы всегда содержат значительно меньше гумуса, различия их с полугидроморфными могут достигать 2 раз. Например, в автоморфных дерново-подзолистых легкосуглинистых почвах на лессовидных суглинках обычное содержание гумуса составляет 1,5-2,0%, а в глееватых и глеевых – 3,0-4,0%. В дерново-подзолистых песчаных эти показатели составляют соответственно 1,0-1,5 и 2,0-2,5 %. При избыточном увлажнении, обусловленном близким залеганием грунтовых вод и застоем поверхностных вод в пониженных элементах рельефа, развивается болотный процесс почвообразования. Особенностью болотного процесса почвообразования являются анаэробные условия и восстановительные процессы. В анаэробных условиях уменьшается активность окислительных процессов, что приводит к ослаблению минерализации органического вещества. На поверхности почвы накапливаются полуразложившиемся органические останки в виде торфа, которому свойственна высокая гидрофильность и влагоемкость, а также низкая аэрация при избыточном увлажнении, ведет к дальнейшему развитию процессов заболачивания. Почвенная влага – основной ресурс для построения тела растений и важнейший фактор, определяющий условия существования сельскохозяйственных культур и обработки почвы. Вода необходима для растений в значительно больших количествах, чем другие средства питания растений. Необходимо отметить, что значительная часть элементов питания усваивается растениями, а характерной особенностью воды является ее непрерывное, одностороннее передвижение из почвы через корни растений вверх по стеблю к листовой поверхности, где она испаряется в атмосферу. Растения, произрастающие на влажной почве, в